
978-1-7281-4275-3/19/$31.00 ©2019 IEEE

Vehicles Classification and Brand Recognition Using Convolution
Network and Neural Networks

Jihene REZGUI ‡, Simon DAZÉ‡, Gaya MEHENNI‡

‡ Laboratoire Recherche Informatique Maisonneuve (LRIMa)
Montreal, Canada

jrezgui@cmaisonneuve.qc.ca

Abstract – Autonomous vehicles are in full development
and vehicles classification is a fundamental part of this
new technology. To interact with other objects on the
road, vehicles need to be able to identify what is
surrounding them. In this paper, we develop a platform
named VARC (Vehicle Algorithm for Recognition and
Classification) integrating a fully connected neural
network to classify different types of vehicles such as
trucks. Moreover, VARC considers the detected type to
identify the brand of the vehicle using a convolutional
neural network. This allows getting valuable
characteristics of the vehicle like its color, the number of
passengers. By processing pictures taken from security
cameras or from ones on vehicles, VARC may help cops
identify stolen cars and autonomous vehicles improve
their perception of their environment. VARC’s neural
network is trained on more than 7000 images of cars,
trucks, and motorcycles. Results demonstrated the
effectiveness of VARC in terms of generating valuable
data while minimizing the needed resources.

Keywords – Artificial Intelligence, Neural Network,
Convolutional neural networks, Autonomous vehicles,
image classification.

I. Introduction
 With the massive attraction toward self-driving vehicles
and using artificial intelligence in transports, vehicle
recognition is now a major part of the future of transports.
Vehicles need to be able to perceive and analyze what is
surrounding them in an instant to be able to react properly.
Doing so requires a capacity to discern different types of
vehicle and classifying them. This challenge requires the
development of an intelligent platform that would be
implemented on vehicles. Different techniques are used to
do image recognition and classification. The usage of
convolutional neural networks (CNN) [1] is one of the most
common and efficient ways to classify and identify images.
Nevertheless, deep neural networks can be used too since
CNNs need major computational power. In this paper, we
combine both structures: (a) the deep neural network

classifies vehicle and (b) the CNN focuses on brand
recognition.
 To be able to analyze an image, VARC needs to adjust the
image to its parameters and then, it extracts the info inside
it and convert those into matrices, which then serve as inputs
for the network. In addition, it is important to note that
neural networks and CNN need many images to train
themselves to be able to categorize them. Then, it is able to
receive brand new images as inputs which, as said before
will be converted into matrices and analyzed by the system.
Our contributions in this paper, can be summarized as
follows: (1) we introduce our platform named VARC which
goal is to classify vehicles, which helps cops identify stolen
cars and autonomous vehicles guide themselves; (2) we
present the two networks used in VARC. A deep neural
network and fully connected which VARC uses to classify
vehicles and the convolutional network it uses to identify
brands on vehicles. (3) We implement the two main
algorithms of feedforward and backpropagation used in the
neural network of VARC. (4) We present the structure of
the convolutional network VARC uses to identify brand
logos on vehicles. (5) We evaluate and discuss the results
on vehicles classification, and we test the variation of
parameters on our system and the effect they have on its
accuracy.

II. Related work
 Work on vehicle classification and recognition are, for the
vast majority, using deep convolutional networks [1]. Some
are trained to detect vehicles edges and relating those edges
to a category, others try to identify the vehicle physiognomy
on background and some try to identify features on a part of
the vehicle image and map that information between
categories.
 Concretely, the usage of vehicle recognition is largely used
in the conception of autonomous vehicles. Tesla is one of
the companies which is a leader in this discipline. They
created an autopilot system for their cars based on artificial
intelligence for recognition. Their autopilot is powered by
sensors and camera all around the car to be able to identify
whatever surrounds the car. All those sensors serve as inputs
for the neural net they are using. [2]

 The need to detect features and specific characteristics
about an image for vehicle recognition and self-driving is
what makes a convolutional network needed. NVIDIA was
able to build a CNN based on only one input camera and
they were able to make it control a car on road testing. Then
they concluded that a CNN would be the perfect tool to
develop autonomous driving. [3] However, the network
trained by Nvidia 27 million connections and 250 000
parameters, making it pretty long to train and work with.
That’s why we limited the classification of VARC to a fully
connected network to see if it could achieve a relevant
efficacity a vehicle classification without carrying the
weight of a big CNN.

III. VARC
A. Inputs
 VARC takes images as inputs and they are converted
(cropped) to fit our network’s dimensions. We used several
datasets to train our network. First, to calibrate the training
and backpropagation we used the MNIST dataset to see if it
was able to classify digits image and then, we proceeded
with vehicles images from different images datasets. We
trained it with pictures of cars, trucks, and motorcycles. We
used different images to test the accuracy of the network and
to see if it able to classify images it didn’t use as training
samples. For the convolutional network, we use images of
cars which aren’t cropped because we need to find details
such as a brand logo on the picture.
B. Platform analysis
 VARC allows the users to choose between two
possibilities: they can use a pre-trained neural network or
train their own neural network to identify types of vehicles.
1) Training : First, to train his own network, the user
needs to select which dataset to use as the training set. He
can make is selection by using a file chooser which will
automatically go through the folder. Then, the user can
choose how many EPOCHS he wants the network to do.
The number of EPOCHS is the number of times the network
will go through the dataset. While the network is training,
the user can visually observe which images are being
analyzed.
2) Testing : After the training phase, users can select
an image to test the network with, they can even take one
downloaded from the web. Then, the network will analyze
it and return the percentage of classification for the vehicle
type. If it is a car, the convolutional network will analyze
the image too to try to find the brand and if it is able to do
so, it will show the average characteristics of the brand's
vehicles. That includes the average acceleration, the oil
consumption, the number of passengers, etc.
3) Guide : VARC even offers its own window of help,
detailing every aspect of it. The user can thereby understand
it more easily.

C. Neural Networks
1) Structure
 The neural network used in VARC is made of multiple
layers: one input layer, two hidden layers and an output
layer (see Fig. 1). Each layer has its own set of neurons,
biases, and weights.

Fig.1. Structure of VARC’s neural network

 All hidden layers have access to a set of inputs, which is the
output of the previous layer, and a set of outputs, which are
the inputs of the next layer. The objective of a layer is to
transform, by using a set of weights randomly generated
connecting every input to every output, a set of inputs into
outputs. This process, which is repeated for each layer of the
network, is the feed forward propagation algorithm, also
called FFPA, which is explained in detail in [2]. In our case,
the goal of the neural network is to identify a specific type
of vehicles (cars, trucks, …). Each value of the input matrix
corresponds to the RGB value of each pixel of a given
image. We then process these values through each layer to
get at the end of the neural network a set of numbers which
can classify the image.
2) Feedforward algorithm
Each layer of the neural network transforms a set of given
numbers into another set by using the feed forward
propagation algorithm. We decided to use the matrix
version of the FFPA to simplify the notation and the
programming of the algorithm. In the input layer, the weight
matrix W is multiplied with the input matrix I which is a
column matrix. Then, the bias matrix B is added to the
product. We then apply the activation function to the sum to
get the output matrix O. The output matrix of that layer
becomes the input of the second layer and the process is
repeated for each layer. Finally, the output of the last layer
is supposed to classify the image.

𝑂 = 𝜎(𝑊 ⋅ 𝐼 + 𝐵) (Eq. 1)

where O represents the column matrix of the outputs, W, the
Weight matrix, I the Column matrix of the inputs, B the
column matrix of biases and 𝜎 , the activation function.
VARC supports many activation functions: the sigmoid
function, the hyperbolic tangent function, the linear
function, the ReLU function, and the SoftMax function.
The sigmoid function can be defined as follows:

𝜎(𝑥) =
1

1 − 𝑒ି௫

(Eq. 2)

That function puts every input value into a range between 0
and 1.
 The hyperbolic tangent function is similar to the sigmoid
function since it compresses every value between a range,
but the main difference is that that range is between -1 and
1. It can be defined as follows:

𝑡𝑎𝑛ℎ(𝑥) =
 2

1 + 𝑒ି2௫
+ 1

(Eq. 3)

The third activation function supported by VARC is the
linear function which can be described as follows:

𝑓(𝑥) = 𝑥 (Eq. 4)

The ReLU activation function can be defined as follows:

𝑓(𝑥) = ൜
𝑥 𝑖𝑓 𝑥 ≥ 0
0 𝑖𝑓 𝑥 < 0

(Eq.5)

 When the ReLU function or the linear function is used as
an activation function in a neural network, the activation
function of the last layer is set automatically to the SoftMax
function to transform the outputs into probabilities. The
SoftMax function’s main goal is to set every output of the
neural network in a range between 0 and 1 and to make them
add up to 1. It can be defined as follows:

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑥)௝ =
𝑒௭ೕ

∑ 𝑒௭ೖ௄
௞ୀ1

(Eq. 6)

where z is a set of number and j is the index of the number
in the set that we are applying the function to.
 The feed forward algorithm, therefore, by assigning each
output to a certain type of vehicle (car, truck, motorcycle),
allows the neural network to guess the type.
3) Backpropagation algorithm
The backpropagation algorithm is an algorithm based on
gradient descent; a mathematical tool used to find the
minimum of a function. It is used to train regular neural
networks. By feeding the neural network a certain input
assigned with a certain label. That label corresponds to a
certain output and by knowing the output that the neural
network got with that input and knowing the actual output it
is supposed to get, we can calculate the error of the neural
network, also known as the cost function. Many cost
functions exist, but the one we used can be defined as
follows:

𝐶 =
1

𝑁
෍(ŷ − 𝑦)2

ே

௡ୀ1

(Eq. 7)

where ŷ is the value obtained by the network, y is the
expected value and N is the number of outputs of the
network.

 The goal of the backpropagation algorithm is to minimize
that cost function by nudging each weight and each bias by
a certain value with an algorithm called gradient descent
(GDA). That algorithm is based on finding the gradient
vector, a vector using the partial derivatives of a
multivariable function that indicates the direction of the
maximum of that same function. By taking the opposite
direction of that vector, the GDA is able to find the
minimum. Depending on the size of the neural networks and
the number of neurons in each layer, the number of
dimensions of that function can go from 1 to infinity.
Finding the absolute minimum of a function like this is
almost impossible, but we can find a local minimum which
gives a high success rate.
 That algorithm, on the other hand, only gives the direction
of a minimum at a local point. Thus, after each step, we need
to recalculate the gradient vector and take another step,
because the vector saved doesn’t indicate the direction of
the minimum at the new point. That process is repeated after
each step. The size of each step is called the learning rate.
 To train our network, we first calculate the error of the final
layer using the cost function and the partial derivative of the
activation function evaluated at the output. We then make
the changes in the weights and biases matrices in the output
layer. Once we got the error of the last layer, we evaluate
the error of the last hidden layer using the error of the output
layer. We then change the weights and biases of that hidden
layer to minimize the cost function a little bit more.
If the neuron is an output neuron, the error can be calculated
with this formula:

𝛿௝
௅

= (ŷ − 𝑦) ⋅ 𝑓′(ŷ) (Eq. 8)

where 𝛿௝
௅
is the error of the jth neuron in the last layer,ŷis the

output value, y is the expected value and 𝑓′(ŷ)is the
derivative of the activation function evaluated at the output
value
 If the neuron is in a hidden layer, the error of each neuron
can be calculated with this formula:

𝛿௝
௟

 = (෍ 𝑤௝,௜
௟ା1𝛿௝

௟ା1

௟ା1

௜ୀ0

) ⋅ 𝑓′(𝑜௝)
(Eq. 9)

where 𝛿௝
௟
is the error of the jth neuron at layer l,

𝑤௝,௜
௟ା1is the weight in the layer l+1 connecting the jth neuron

in the layer l+1 to the ith neuron in the layer l,

𝛿௝
௟ା1

is the error of the jth neuron at layer l+1 and 𝑓′(𝑜௝) is the

derivative of the activation function evaluated at the output
of the jth neuron.

The matrix form of these equations is much simpler to use
and can be defined as follows [4]:

𝛿௅ = 𝛻௔𝐶 ⨀ 𝜎′(𝑧௅) (BP1)

𝛿௅ = ((𝑤௟ାଵ)்𝛿௟ାଵ) ⨀ 𝜎′(𝑧௟) (BP2)

𝜕𝐶

𝜕𝑏௝
௟ = 𝛿௝

௟
(BP3)

𝜕𝐶

𝜕𝑤௝௞
௟ = 𝑎௞

௟ିଵ𝛿௝
௟

(BP4)

BP1, as shown above, is the backpropagation of the output
layer, BP2 is the error for each hidden layer and BP3 and
BP4 show the derivative respect to each bias and each
weight.
 That process is repeated until the input layer which doesn’t
have any weights and biases to update. This algorithm is
called the backpropagation algorithm because it goes by
the neural network backward.
4) Dataset
Even though the BPA and the FFPA are the core of neural
networks, they need something else to get a general idea of
what a vehicle is: data. To make the training more efficient,
neural networks need to see the data in random order. The
reason is simple: if we give it thousands of images of cars
and then thousands of images of trucks, it will first adjust to
recognize a car and then a truck, but never both at the same
time. Therefore, the dataset needs to be set in a random
order for the network to get a general idea of what a car and
a truck is.
D. Convolutional neural network

Fig. 2. Convolutional network structure and color

channels

 Convolutional neural networks, also called CNNs, are
enhanced versions of neural networks for image
recognition. They are able to recognize patterns and merge
these patterns to guess the shape of an image and classify it.
They are composed of various kinds of layers (see Fig. 2)
like the convolutional layer, the max pooling layer, the
vectorization layer, and the fully connected layer and many
more. Those used to create VARC will be defined below.
1) Convolutional layer
 Convolutional layers are the most important layers in
CNN. Their goal is to detect edges inside an image by using
filters (see Fig.4) The filters slide through the image
(converted as a matrix) and returns a new smaller matrix
where edges and patterns are highlighted. This sliding
consists in the operation of this layer: the convolution

product, which is based on the Hadamard product. The
outputs of those layers consist of smaller matrices. The size
of the outputs depends on the filter size and can be defined
as follows:

𝑂 = 𝐼 − 𝐹 + 1 (Eq.10)

Where O is the output matrix size, I is the input matrix size
and F is the filter size.

Fig. 3. Convolutional layer

2) Max pooling layer

Fig. 4. Max pooling layer

 The goal of the max pooling layer is to extract the most
important information about a matrix. To do so, a filter slide
through the matrix and extract the maximum value of each
sub-matrices generated, then it stocks those values in a new
smaller matrix which is the output of those layers. Max
pooling layers are always after convolution layers to extract
the most meaningful information highlighted by the
convolutional layers. There is usually one or two
convolutional layers followed by a max pooling in a CNN.
 It is important to note that there are other ways to pool
information out of a matrix in a CNN like by pooling the
average value of the submatrices.
3) Vectorisation layer
The goal of a vectorization layer is simply to transform a 3D
set of inputs into 1D. Indeed, since the output of a
convolutional layer or a pooling layer is always an array of
matrices and that at the end, we must have a single array,
we need a layer to transform 3D parameters into 1D (see
Fig. 5)

Fig. 5. Vectorisation layer flattening 3D inputs

 The vectorization layer is always the second last layer of
the CNN because its objective is to transform the input of a
convolutional layer or a pooling layer into a set of inputs a
fully connected layer can take.
4) Fully connected layer
A fully connected layer is the same layer as one in a regular
neural network (see Fig. 6). It has weights and biases and
uses the same two algorithms to train (FFPA and BPA)

Fig. 6. Fully connected layer

5) Feed Forward
 The feed forward propagation algorithm (FFPA) for
convolutional neural networks is a more complex algorithm
than the one for regular neural networks because the
operation to transform inputs into outputs is different in
every layer. For each layer, we apply its own operation. We
then transmit the output of that layer to the next and repeat
the process until we get to the final output of the network.
A convolutional neural network always ends with a
vectorization layer and a fully connected layer to transform
the 3D input into an array of numbers and classify an image
from the given one-dimensional input.
6) Backpropagation
 The backpropagation algorithm (BPA) in a convolutional
neural network is also similar to the one for neural networks
with a few differences. Indeed, since not every input is
connected to every output, the partial derivatives differ, but
the idea remains the same: with the cost function, get the
error of a layer, use that error to change the parameters like
the weights and biases and propagate that error in the
previous layers. Considering each layer is different, the
equations for the errors of each layer is different. If we use
the same cost function, the error of each layer can be defined
as follows:
The error of a fully connected layer (see section D.4) :

∆𝛿 = 𝑊் × ∆ŷ
∆𝑊 = ∆ŷ × 𝐼்

𝛥𝐵 = 𝛥ŷ

𝛥ŷ(𝑖) = (ŷ(𝑖) − 𝑦(𝑖)) · 𝑓′(ŷ(𝑖))

(Eq. 11)

where, Δδ is the error of the layer, W is the weight matrix, ŷ
is the output of the network, y the expected value, I the
inputs matrix, ΔW is the matrix with the variation of each
weight and ΔB is the matrix with the variation of each bias.

Updated weights and biases of a fully connected layer
(Section D.4)

𝑊 = 𝑊 − 𝜂 ⋅ 𝛥𝑊
𝐵 = 𝐵 − 𝜂 ⋅ 𝛥𝐵

(Eq .12)

where, W is the weight matrix, ΔW is the matrix with the
variation of each weight, ΔB is the matrix with the variation
of each bias and η is the learning rate.
The error of a vectorization layer (Section D.3) :
Since there are no variables to update in a vectorization
layer, we just need to transform the flattened errors back
into an array of matrices.
The error of a convolutional layer (Section D.1):

𝛥𝛿𝑖
𝑙−1 = ෍ 𝛥𝐶𝑓,𝜎

𝑙 ∗ 𝑘𝑓,𝑖
𝑙

𝐹

𝑓=1

𝛥𝐶𝑓,𝜎
𝑙 (𝑖, 𝑗) = 𝛥𝐶𝑓

𝑙 (𝑖, 𝑗) ⋅ 𝑓′(𝑂𝑓
𝑙)

(Eq. 13)

where 𝛥𝛿𝑖
𝑙 is the error of input i of the layer l, 𝛥𝐶𝑓

𝑙 the error

of the filter f in the layer l, f’(x) the derivative of the

activation function and 𝑂௙
௟ the output value of filter f of layer

l.
* Denotes a full convolutional operation, not a valid
convolutional operation like the one used in the FFPA. The
main difference is that in a valid convolutional operation,
we add padding before applying the operation. In that case,
the padding is the size of the filter - 1.
Updated weights and biases of a convolutional layer (see
section D.1)

𝛥𝑘௜,௙
௟ (𝑢, 𝑣) = ෍ ෍ 𝛥𝛿௙

௟ା1 ⋅ 𝑓′(𝑂௙
௟)

௧

௤ୀ1

௧

௣ୀ1

⋅ 𝐼௜
௟(𝑝 − 𝑢, 𝑞 − 𝑣)

(Eq. 14)

 where 𝛥𝑘𝑖,𝑓
𝑙 (𝑢, 𝑣)is the variation of the weight indexed at

u and v of the filter f at layer l for the input i, t is the size of
the output matrix for the input i and filter (we consider that

it is a square matrix, 𝛥𝛿𝑓
𝑙+1is the error of the output f in the

next layer (there are as many filters as outputs), f’(x) is the

derivative of the activation function, 𝑂௙
௟ is the output value

of filter f of layer l and 𝐼௜
௟(𝑝 − 𝑢, 𝑞 − 𝑣)is the input value of

the ith matrix at layer l of index (p - u) and (q - v).
IV. Platform Results

 For our testing, we used two hidden layers and the
following configuration of neurons (see Fig.1 for more
details):

2352, 64, 32, 3
Here, each number represents the number of neurons of

the layer. In order from the input to the output.
 First, we tested the neural network with vehicles
classification, and we varied the learning rate and the
number of epochs to highlight the best combination and how

they influence each other. We used the MIO-TCD dataset to
train our networks.

Fig. 7. Success rate depending on the learning rate for a
training with 3000 images/EPOCH to classify vehicles

between 3 categories

 Thereby testing with several learning rates with achieved
a success of 64.8% with 150 EPOCHS and 0.25 of learning
rate. Also, we denoted that the best learning rate was
between 0.15 and 0.25 for our neural network. However, the
training phase was a bit long, so we tried to reduce the
number of images per EPOCHS and we retested with the
same parameters.
 There we were able to achieve practically the same
accuracy by reducing the training time and the number of
images used to train the network. Also, we confirmed that
the most efficient parameters for our network (we small
numbers of EPOCHS) is to use 150 EPOCHS and learning
rate of 0.25.
With those results, we demonstrated that a high learning rate
(0.25) coupled with a relatively small number of EPOCHS
can have a significant success rate. In fact, in both Fig. 7 and
Fig. 8 we achieved more than 60 % accuracy with 150
EPOCHS and 0.25 learning rate. Also, with 1000 images
per EPOCHS VARC achieved 63.93 %, it’s 0.9 less than
with 3000 images per EPOCHS. By doing so, we found that
a simple neural network can achieve significant results in
vehicle recognition despite not having convolution layers
and millions of parameters.

Fig. 8. Success rate depending on the learning rate for a
training with 1000 images/EPOCH

Acknowledgment

 We would want to thank Simon Vezina and Caroline
Houle, professors at College de Maisonneuve, for their help
regarding this project in the implementation of the neural
network and convolutional neural network.

References
[1] D.T, MUNROE and G.M, MADDEN. “Multi-Class and
Single-Class Classification Approaches to Vehicle Model
Recognition from Images.” AICS, pages 93-102. 2005
[2] TESLA. “Autopilot.” 2019.
https://www.tesla.com/autopilot [last visit and update
30/04/2019]
[3] M. Bojarski. et al. “End to End Learning for Self-
Driving Cars.” airXiv.1604.07316. (April 25, 2016).
[4] M. Nielsen. “Neural Network and deep Learning.
Chapter 2: How the backpropagation algorithm works.”,
2015.
[5] Medium. “Understanding of Convolutional Neural
Network (CNN) - Deep Learning.”
https://medium.com/@RaghavPrabhu/understanding-of-
convolutional-neural-network-cnn-deep-learning-
99760835f148 [last visit 20/04/2019]
[6] Z. Zhang. “Derivation of Backpropagation in
Convolutional Neural Network (CNN).” 2016.
[7] A. Ng. DeepLearning.ai: “Convolutional Neural
Networks: course 4 of the deep learning specialisation.”
YouTube. (2017).
[8] L. Zhuo, et al. “Vehicle classification for large-scale
traffic surveillance videos using Convolutional Neural
Networks.”Machine Vision and Application. (2017).
[9] ShutterStock.INC.Carimage.
https://image.shutterstock.com/image-vector/black-white-
car-260nw-226838140.jpg
[10] S. Saha. “A Comprehensive Guide to Convolutional
Neural Networks- The EL15 Way.” 2018.
https://towardsdatascience.com/a-comprehensive-guide-to-
convolutional-neural-networks-the-eli5-way-
3bd2b1164a53. [last visit 18/04/2019]
[11] G. Gwardyz. “Convolutional Neural Networks
backpropagation: from intuition to derivation.” WordPress.
2018.

[12] Z. Luo, et al. “MIO-TCD: A new benchmark dataset
for vehicle classification and localization in press at IEEE
Transactions on Image Processing”.2018.

[13] Jefkin. “Backpropagation in Convolutional Neural
Networks.” Deep Grid. 2016.
[14] Stanford University. “CS231n: Convolutional Neural
Networks for Visual Recognition.” 2018.
[15] M. Agarwal. “Backpropagation in Convolutional
Neural Networks - Intuition and Code.”Medium. 2017.

40
45
50
55
60
65
70
75
80

0 0,1 0,2 0,3

Su
cc

es
 R

at
e

(%
)

Learning Rate

100 EPOCHS
200 EPOCHS
150 EPOCHS

0

10

20

30

40

50

60

70

0 0,1 0,2 0,3

Su
cc

es
 R

at
e

(%
)

Learning rate

100 EPOCHS
200 EPOCHS
150 EPOCHS

