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Abstract – Autonomous vehicles are in full development 
and vehicles classification is a fundamental part of this 
new technology. To interact with other objects on the 
road, vehicles need to be able to identify what is 
surrounding them. In this paper, we develop a platform 
named VARC (Vehicle Algorithm for Recognition and 
Classification) integrating a fully connected neural 
network to classify different types of vehicles such as 
trucks. Moreover, VARC considers the detected type to 
identify the brand of the vehicle using a convolutional 
neural network. This allows getting valuable 
characteristics of the vehicle like its color, the number of 
passengers. By processing pictures taken from security 
cameras or from ones on vehicles, VARC may help cops 
identify stolen cars and autonomous vehicles improve 
their perception of their environment. VARC’s neural 
network is trained on more than 7000 images of cars, 
trucks, and motorcycles. Results demonstrated the 
effectiveness of VARC in terms of generating valuable 
data while minimizing the needed resources. 
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I. Introduction 
   With the massive attraction toward self-driving vehicles 
and using artificial intelligence in transports, vehicle 
recognition is now a major part of the future of transports. 
Vehicles need to be able to perceive and analyze what is 
surrounding them in an instant to be able to react properly. 
Doing so requires a capacity to discern different types of 
vehicle and classifying them. This challenge requires the 
development of an intelligent platform that would be 
implemented on vehicles. Different techniques are used to 
do image recognition and classification. The usage of 
convolutional neural networks (CNN) [1] is one of the most 
common and efficient ways to classify and identify images. 
Nevertheless, deep neural networks can be used too since 
CNNs need major computational power. In this paper, we 
combine both structures: (a) the deep neural network 

classifies vehicle and (b) the CNN focuses on brand 
recognition.  
  To be able to analyze an image, VARC needs to adjust the 
image to its parameters and then, it extracts the info inside 
it and convert those into matrices, which then serve as inputs 
for the network. In addition, it is important to note that 
neural networks and CNN need many images to train 
themselves to be able to categorize them. Then, it is able to 
receive brand new images as inputs which, as said before 
will be converted into matrices and analyzed by the system.  
Our contributions in this paper, can be summarized as 
follows: (1) we introduce our platform named VARC which 
goal is to classify vehicles, which helps cops identify stolen 
cars and autonomous vehicles guide themselves; (2) we 
present the two networks used in VARC. A deep neural 
network and fully connected which VARC uses to classify 
vehicles and the convolutional network it uses to identify 
brands on vehicles. (3) We implement the two main 
algorithms of feedforward and backpropagation used in the 
neural network of VARC. (4) We present the structure of 
the convolutional network VARC uses to identify brand 
logos on vehicles.  (5) We evaluate and discuss the results 
on vehicles classification, and we test the variation of 
parameters on our system and the effect they have on its 
accuracy.  

II. Related work 
  Work on vehicle classification and recognition are, for the 
vast majority, using deep convolutional networks [1]. Some 
are trained to detect vehicles edges and relating those edges 
to a category, others try to identify the vehicle physiognomy 
on background and some try to identify features on a part of 
the vehicle image and map that information between 
categories.  
 Concretely, the usage of vehicle recognition is largely used 
in the conception of autonomous vehicles. Tesla is one of 
the companies which is a leader in this discipline. They 
created an autopilot system for their cars based on artificial 
intelligence for recognition. Their autopilot is powered by 
sensors and camera all around the car to be able to identify 
whatever surrounds the car. All those sensors serve as inputs 
for the neural net they are using. [2]    



 
 

  The need to detect features and specific characteristics 
about an image for vehicle recognition and self-driving is 
what makes a convolutional network needed. NVIDIA was 
able to build a CNN based on only one input camera and 
they were able to make it control a car on road testing. Then 
they concluded that a CNN would be the perfect tool to 
develop autonomous driving. [3] However, the network 
trained by Nvidia 27 million connections and 250 000 
parameters, making it pretty long to train and work with. 
That’s why we limited the classification of VARC to a fully 
connected network to see if it could achieve a relevant 
efficacity a vehicle classification without carrying the 
weight of a big CNN. 

III. VARC   
A. Inputs 
   VARC takes images as inputs and they are converted 
(cropped) to fit our network’s dimensions. We used several 
datasets to train our network. First, to calibrate the training 
and backpropagation we used the MNIST dataset to see if it 
was able to classify digits image and then, we proceeded 
with vehicles images from different images datasets. We 
trained it with pictures of cars, trucks, and motorcycles. We 
used different images to test the accuracy of the network and 
to see if it able to classify images it didn’t use as training 
samples. For the convolutional network, we use images of 
cars which aren’t cropped because we need to find details 
such as a brand logo on the picture. 
B.  Platform analysis 
  VARC allows the users to choose between two 
possibilities: they can use a pre-trained neural network or 
train their own neural network to identify types of vehicles. 
1) Training : First, to train his own network, the user 
needs to select which dataset to use as the training set. He 
can make is selection by using a file chooser which will 
automatically go through the folder. Then, the user can 
choose how many EPOCHS he wants the network to do. 
The number of EPOCHS is the number of times the network 
will go through the dataset. While the network is training, 
the user can visually observe which images are being 
analyzed. 
2)   Testing : After the training phase, users can select 
an image to test the network with, they can even take one 
downloaded from the web. Then, the network will analyze 
it and return the percentage of classification for the vehicle 
type. If it is a car, the convolutional network will analyze 
the image too to try to find the brand and if it is able to do 
so, it will show the average characteristics of the brand's 
vehicles. That includes the average acceleration, the oil 
consumption, the number of passengers, etc. 
3)  Guide : VARC even offers its own window of help, 
detailing every aspect of it. The user can thereby understand 
it more easily. 

C. Neural Networks 
1)   Structure 
  The neural network used in VARC is made of multiple 
layers: one input layer, two hidden layers and an output 
layer (see Fig. 1). Each layer has its own set of neurons, 
biases, and weights.  

 
Fig.1. Structure of VARC’s neural network 

 
 All hidden layers have access to a set of inputs, which is the 
output of the previous layer, and a set of outputs, which are 
the inputs of the next layer. The objective of a layer is to 
transform, by using a set of weights randomly generated 
connecting every input to every output, a set of inputs into 
outputs. This process, which is repeated for each layer of the 
network, is the feed forward propagation algorithm, also 
called FFPA, which is explained in detail in [2]. In our case, 
the goal of the neural network is to identify a specific type 
of vehicles (cars, trucks, …). Each value of the input matrix 
corresponds to the RGB value of each pixel of a given 
image. We then process these values through each layer to 
get at the end of the neural network a set of numbers which 
can classify the image. 
2) Feedforward algorithm 
Each layer of the neural network transforms a set of given 
numbers into another set by using the feed forward 
propagation algorithm. We decided to use the matrix 
version of the FFPA to simplify the notation and the 
programming of the algorithm. In the input layer, the weight 
matrix W is multiplied with the input matrix I which is a 
column matrix. Then, the bias matrix B is added to the 
product. We then apply the activation function to the sum to 
get the output matrix O. The output matrix of that layer 
becomes the input of the second layer and the process is 
repeated for each layer. Finally, the output of the last layer 
is supposed to classify the image. 

𝑂 =  𝜎(𝑊 ⋅ 𝐼 + 𝐵) (Eq. 1) 

where O represents the column matrix of the outputs, W, the 
Weight matrix, I the Column matrix of the inputs, B the 
column matrix of biases and 𝜎 , the activation function. 
VARC supports many activation functions: the sigmoid 
function, the hyperbolic tangent function, the linear 
function, the ReLU function, and the SoftMax function.  
The sigmoid function can be defined as follows:  

𝜎(𝑥)  =  
1

1 −  𝑒ି௫
 

(Eq. 2) 



 
 

That function puts every input value into a range between 0 
and 1. 
   The hyperbolic tangent function is similar to the sigmoid 
function since it compresses every value between a range, 
but the main difference is that that range is between -1 and 
1. It can be defined as follows: 

𝑡𝑎𝑛ℎ(𝑥)  =  
 2 

1 + 𝑒ି2௫
+ 1 

(Eq. 3) 

The third activation function supported by VARC is the 
linear function which can be described as follows: 

𝑓(𝑥)  =  𝑥 (Eq. 4) 

The ReLU activation function can be defined as follows:  

𝑓(𝑥) = ൜
𝑥 𝑖𝑓 𝑥 ≥ 0
0 𝑖𝑓 𝑥 < 0

 
(Eq.5) 

 When the ReLU function or the linear function is used as 
an activation function in a neural network, the activation 
function of the last layer is set automatically to the SoftMax 
function to transform the outputs into probabilities. The 
SoftMax function’s main goal is to set every output of the 
neural network in a range between 0 and 1 and to make them 
add up to 1. It can be defined as follows:  

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑥)௝ =
𝑒௭ೕ

∑ 𝑒௭ೖ௄
௞ୀ1

  
(Eq. 6) 

where z is a set of number and j is the index of the number 
in the set that we are applying the function to. 
   The feed forward algorithm, therefore, by assigning each 
output to a certain type of vehicle (car, truck, motorcycle), 
allows the neural network to guess the type. 
3) Backpropagation algorithm 
The backpropagation algorithm is an algorithm based on 
gradient descent; a mathematical tool used to find the 
minimum of a function. It is used to train regular neural 
networks. By feeding the neural network a certain input 
assigned with a certain label. That label corresponds to a 
certain output and by knowing the output that the neural 
network got with that input and knowing the actual output it 
is supposed to get, we can calculate the error of the neural 
network, also known as the cost function. Many cost 
functions exist, but the one we used can be defined as 
follows:  

𝐶 =  
1

𝑁
෍(ŷ −  𝑦)2

ே

௡ୀ1

 
(Eq. 7) 

where ŷ is the value obtained by the network, y is the 
expected value and N is the number of outputs of the 
network. 

 The goal of the backpropagation algorithm is to minimize 
that cost function by nudging each weight and each bias by 
a certain value with an algorithm called gradient descent 
(GDA). That algorithm is based on finding the gradient 
vector, a vector using the partial derivatives of a 
multivariable function that indicates the direction of the 
maximum of that same function. By taking the opposite 
direction of that vector, the GDA is able to find the 
minimum. Depending on the size of the neural networks and 
the number of neurons in each layer, the number of 
dimensions of that function can go from 1 to infinity. 
Finding the absolute minimum of a function like this is 
almost impossible, but we can find a local minimum which 
gives a high success rate. 
  That algorithm, on the other hand, only gives the direction 
of a minimum at a local point. Thus, after each step, we need 
to recalculate the gradient vector and take another step, 
because the vector saved doesn’t indicate the direction of 
the minimum at the new point. That process is repeated after 
each step. The size of each step is called the learning rate. 
  To train our network, we first calculate the error of the final 
layer using the cost function and the partial derivative of the 
activation function evaluated at the output. We then make 
the changes in the weights and biases matrices in the output 
layer. Once we got the error of the last layer, we evaluate 
the error of the last hidden layer using the error of the output 
layer. We then change the weights and biases of that hidden 
layer to minimize the cost function a little bit more. 
If the neuron is an output neuron, the error can be calculated 
with this formula:  

𝛿௝
௅

= (ŷ −  𝑦) ⋅  𝑓′(ŷ) (Eq. 8) 

where 𝛿௝
௅
is the error of the jth neuron in the last layer,ŷis the 

output value, y is the expected value and 𝑓′(ŷ)is the 
derivative of the activation function evaluated at the output 
value 
  If the neuron is in a hidden layer, the error of each neuron 
can be calculated with this formula: 

𝛿௝
௟

 = (෍ 𝑤௝,௜
௟ା1𝛿௝

௟ା1

௟ା1

௜ୀ0

) ⋅ 𝑓′(𝑜௝)  
(Eq. 9) 

where 𝛿௝
௟
is the error of the jth neuron at layer l,  

𝑤௝,௜
௟ା1is the weight in the layer l+1 connecting the jth neuron 

in the layer l+1 to the ith neuron in the layer l, 

𝛿௝
௟ା1

is the error of the jth neuron at layer l+1 and 𝑓′(𝑜௝) is the 

derivative of the activation function evaluated at the output 
of the jth neuron. 
 
The matrix form of these equations is much simpler to use 
and can be defined as follows [4]: 



 
 

𝛿௅ = 𝛻௔𝐶 ⨀ 𝜎′(𝑧௅) (BP1) 

𝛿௅ = ((𝑤௟ାଵ)்𝛿௟ାଵ) ⨀ 𝜎′(𝑧௟) (BP2) 

𝜕𝐶

𝜕𝑏௝
௟ = 𝛿௝

௟ 
(BP3) 

𝜕𝐶

𝜕𝑤௝௞
௟ = 𝑎௞

௟ିଵ𝛿௝
௟ 

(BP4) 

BP1, as shown above, is the backpropagation of the output 
layer, BP2 is the error for each hidden layer and BP3 and 
BP4 show the derivative respect to each bias and each 
weight. 
  That process is repeated until the input layer which doesn’t 
have any weights and biases to update. This algorithm is 
called the backpropagation algorithm because it goes by 
the neural network backward. 
4) Dataset 
Even though the BPA and the FFPA are the core of neural 
networks, they need something else to get a general idea of 
what a vehicle is: data. To make the training more efficient, 
neural networks need to see the data in random order. The 
reason is simple: if we give it thousands of images of cars 
and then thousands of images of trucks, it will first adjust to 
recognize a car and then a truck, but never both at the same 
time. Therefore, the dataset needs to be set in a random 
order for the network to get a general idea of what a car and 
a truck is.  
D. Convolutional neural network 

 
Fig. 2. Convolutional network structure and color 

channels  
 

 Convolutional neural networks, also called CNNs, are 
enhanced versions of neural networks for image 
recognition. They are able to recognize patterns and merge 
these patterns to guess the shape of an image and classify it. 
They are composed of various kinds of layers (see Fig. 2) 
like the convolutional layer, the max pooling layer, the 
vectorization layer, and the fully connected layer and many 
more. Those used to create VARC will be defined below. 
1)   Convolutional layer 
  Convolutional layers are the most important layers in 
CNN. Their goal is to detect edges inside an image by using 
filters (see Fig.4) The filters slide through the image 
(converted as a matrix) and returns a new smaller matrix 
where edges and patterns are highlighted. This sliding 
consists in the operation of this layer: the convolution 

product, which is based on the Hadamard product. The 
outputs of those layers consist of smaller matrices. The size 
of the outputs depends on the filter size and can be defined 
as follows: 

𝑂 =  𝐼 −  𝐹 +  1 (Eq.10) 

Where O is the output matrix size, I is the input matrix size 
and F is the filter size. 

 
Fig. 3. Convolutional layer 

 
2) Max pooling layer 
   

 
Fig. 4. Max pooling layer  

 
   The goal of the max pooling layer is to extract the most 
important information about a matrix. To do so, a filter slide 
through the matrix and extract the maximum value of each 
sub-matrices generated, then it stocks those values in a new 
smaller matrix which is the output of those layers. Max 
pooling layers are always after convolution layers to extract 
the most meaningful information highlighted by the 
convolutional layers. There is usually one or two 
convolutional layers followed by a max pooling in a CNN.  
   It is important to note that there are other ways to pool 
information out of a matrix in a CNN like by pooling the 
average value of the submatrices. 
3) Vectorisation layer 
The goal of a vectorization layer is simply to transform a 3D 
set of inputs into 1D. Indeed, since the output of a 
convolutional layer or a pooling layer is always an array of 
matrices and that at the end, we must have a single array, 
we need a layer to transform 3D parameters into 1D (see 
Fig. 5)  

 
Fig. 5. Vectorisation layer flattening 3D inputs 



 
 

 
 The vectorization layer is always the second last layer of 
the CNN because its objective is to transform the input of a 
convolutional layer or a pooling layer into a set of inputs a 
fully connected layer can take. 
4) Fully connected layer 
A fully connected layer is the same layer as one in a regular 
neural network (see Fig. 6). It has weights and biases and 
uses the same two algorithms to train (FFPA and BPA) 

 
Fig. 6. Fully connected layer  

 
5)   Feed Forward 
   The feed forward propagation algorithm (FFPA) for 
convolutional neural networks is a more complex algorithm 
than the one for regular neural networks because the 
operation to transform inputs into outputs is different in 
every layer. For each layer, we apply its own operation. We 
then transmit the output of that layer to the next and repeat 
the process until we get to the final output of the network. 
A convolutional neural network always ends with a 
vectorization layer and a fully connected layer to transform 
the 3D input into an array of numbers and classify an image 
from the given one-dimensional input. 
6)   Backpropagation 
  The backpropagation algorithm (BPA) in a convolutional 
neural network is also similar to the one for neural networks 
with a few differences. Indeed, since not every input is 
connected to every output, the partial derivatives differ, but 
the idea remains the same: with the cost function, get the 
error of a layer, use that error to change the parameters like 
the weights and biases and propagate that error in the 
previous layers. Considering each layer is different, the 
equations for the errors of each layer is different. If we use 
the same cost function, the error of each layer can be defined 
as follows: 
The error of a fully connected layer (see section D.4) :  

∆𝛿 =  𝑊்  × ∆ŷ 
∆𝑊 =  ∆ŷ ×  𝐼் 

𝛥𝐵 =  𝛥ŷ 

𝛥ŷ(𝑖)  = (ŷ(𝑖)  −  𝑦(𝑖))  ·  𝑓′(ŷ(𝑖)) 

(Eq. 11) 

where, Δδ is the error of the layer, W is the weight matrix, ŷ 
is the output of the network, y the expected value, I the 
inputs matrix, ΔW is the matrix with the variation of each 
weight and ΔB is the matrix with the variation of each bias. 

Updated weights and biases of a fully connected layer 
(Section D.4) 

𝑊 = 𝑊 − 𝜂 ⋅ 𝛥𝑊 
𝐵 =  𝐵 −  𝜂 ⋅ 𝛥𝐵 

(Eq .12) 

where, W is the weight matrix, ΔW is the matrix with the 
variation of each weight, ΔB is the matrix with the variation 
of each bias and η is the learning rate. 
The error of a vectorization layer (Section D.3) : 
Since there are no variables to update in a vectorization 
layer, we just need to transform the flattened errors back 
into an array of matrices. 
The error of a convolutional layer (Section D.1):  

𝛥𝛿𝑖
𝑙−1 = ෍ 𝛥𝐶𝑓,𝜎

𝑙 ∗ 𝑘𝑓,𝑖
𝑙

𝐹

𝑓=1

 

𝛥𝐶𝑓,𝜎
𝑙 (𝑖, 𝑗) = 𝛥𝐶𝑓

𝑙 (𝑖, 𝑗) ⋅ 𝑓′(𝑂𝑓
𝑙 ) 

(Eq. 13) 

where 𝛥𝛿𝑖
𝑙 is the error of input i of the layer l, 𝛥𝐶𝑓

𝑙  the error 

of the filter f in the layer l, f’(x) the derivative of the 

activation function and 𝑂௙
௟  the output value of filter f of layer 

l.  
* Denotes a full convolutional operation, not a valid 
convolutional operation like the one used in the FFPA. The 
main difference is that in a valid convolutional operation, 
we add padding before applying the operation. In that case, 
the padding is the size of the filter - 1. 
Updated weights and biases of a convolutional layer (see 
section D.1) 

𝛥𝑘௜,௙
௟ (𝑢, 𝑣) = ෍ ෍ 𝛥𝛿௙

௟ା1 ⋅ 𝑓′(𝑂௙
௟ )

௧

௤ୀ1

௧

௣ୀ1

⋅ 𝐼௜
௟(𝑝 − 𝑢, 𝑞 − 𝑣) 

(Eq. 14) 
 

   where 𝛥𝑘𝑖,𝑓
𝑙 (𝑢, 𝑣)is the variation of the weight indexed at 

u and v of the filter f at layer l for the input i, t is the size of 
the output matrix for the input i and filter (we consider that 

it is a square matrix, 𝛥𝛿𝑓
𝑙+1is the error of the output f in the 

next layer (there are as many filters as outputs), f’(x) is the 

derivative of the activation function, 𝑂௙
௟  is the output value 

of filter f of layer l and 𝐼௜
௟(𝑝 − 𝑢, 𝑞 − 𝑣)is the input value of 

the ith matrix at layer l of index (p - u) and (q - v). 
IV. Platform Results 

   For our testing, we used two hidden layers and the 
following configuration of neurons (see Fig.1 for more 
details): 

2352, 64, 32, 3 
Here, each number represents the number of neurons of 

the layer. In order from the input to the output. 
    First, we tested the neural network with vehicles 
classification, and we varied the learning rate and the 
number of epochs to highlight the best combination and how 



 
 

they influence each other. We used the MIO-TCD dataset to 
train our networks. 

 

Fig. 7. Success rate depending on the learning rate for a 
training with 3000 images/EPOCH to classify vehicles 

between 3 categories 
 

   Thereby testing with several learning rates with achieved 
a success of 64.8% with 150 EPOCHS and 0.25 of learning 
rate. Also, we denoted that the best learning rate was 
between 0.15 and 0.25 for our neural network. However, the 
training phase was a bit long, so we tried to reduce the 
number of images per EPOCHS and we retested with the 
same parameters.  
   There we were able to achieve practically the same 
accuracy by reducing the training time and the number of 
images used to train the network.  Also, we confirmed that 
the most efficient parameters for our network (we small 
numbers of EPOCHS) is to use 150 EPOCHS and learning 
rate of 0.25. 
With those results, we demonstrated that a high learning rate 
(0.25) coupled with a relatively small number of EPOCHS 
can have a significant success rate. In fact, in both Fig. 7 and 
Fig. 8 we achieved more than 60 % accuracy with 150 
EPOCHS and 0.25 learning rate. Also, with 1000 images 
per EPOCHS VARC achieved 63.93 %, it’s 0.9 less than 
with 3000 images per EPOCHS. By doing so, we found that 
a simple neural network can achieve significant results in 
vehicle recognition despite not having convolution layers 
and millions of parameters.  

 

Fig. 8. Success rate depending on the learning rate for a 
training with 1000 images/EPOCH 
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