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Abstract—Beaconing in vehicular networks (VANETs) is a 

greatly developed research field able to support safety 

applications like warning the drivers of potential dangers. 

Nevertheless, service messages, that uses different channels than 

beaconing, are also a core part to improve worldwide driving 

conditions and to minimizing traffic. This paper provides data 

analysis tools and algorithms for the detection and the analysis of 

road events. In particular, we develop a Java platform called 

“AMNAM” [1]. Its purpose is transposing and obfuscating raw 

simulation data into realistic information to, ultimately, detect 

the real world position of these events e.g. potholes, roadblocks, 

etc. Additionally, AMNAM computes the optimal route 

according to the detected events. Through extensive simulations, 

we demonstrate the efficiency of our proposed algorithms for the 

detection of punctual events. We also propose a new heuristic 

called “DirectionnalWeight” (DW) which adds a supplementary 

weight to the edges guiding the search towards the destination. 

Moreover, AMNAM’s modified A* algorithm enforced by DW 

outperforms classic pathfinding algorithms found in the 

literature in terms of required iterations for its completion. 

Keywords—VANET; Global Perception; Shortest Path; 

Vehicular Data; DSRC; Virage Simulation; OPTICS; AMNAM. 

I. INTRODUCTION 

VANETs bring a whole new spectrum of functionalities to 
the traditional vehicle. The latter can be used to save energy, 
time, and to lower the victims of car crashes by preventing 
accidents. In VANETs, vehicles can communicate with each 
other (V2V) or to equipment part of the infrastructure (V2I). 
These networks use the DSRC/802.11p protocol: a wireless 
communication system using the 5.85-5.925 GHz spectrum. 
DSRC provides seven 10 MHz channels, all of which have a 
separate function (cf., figure 1).  

As shown in the next figure, the orange channels are the 
Service Channels (SCH) and are split in two parts: the 
medium range SCHs and the short-range SCHs. These 
channels are designed for extended data transfer for V2I and 
V2V communications. SCHs allows connected vehicles to 
easily fetch and send information on their surroundings to 
others without affecting periodic and alert message 
transmission. 

 

Fig. 1. DSRC’s Service and Channels along with an example application 

With the SCHs, VANETs can be used to reduce traffic by 

gathering collective data. In this paper, we use the notion of 

road events (or simply “events”) defined as something 

happening on the road. The average daily travel time is greatly 

affected by the increasing number of vehicles on the roads of 

the globe. Rush hours significantly magnify the congestion up 

to 75% as in Los Angeles [2]. In Montreal, Canada, where the 

congestion levels peaks at 50% [3], such slowdowns cost 

approximately 1.4 Billion Canadian Dollars in 2010 [4]. The 

computation of a global perception of the road network fuelled 

by road events sent by DSRC-enabled vehicles could greatly 

improve the world’s traffic flow.  

Our contributions, in this paper, can be summarized as 
follows: (1) We introduce our Java platform, called 
“AMNAM,” containing multiple data analysis tools for road 
events; (2) We modify the usual behaviour of “Virage 
Simulation”’s (VS) simulators (VSIM) [5] to obtain raw data 
from our vehicular simulations to, then, use it as input for 
AMNAM; (3) We propose algorithms to transpose and 
obfuscate raw simulation data into realistic information; (4) 
We adapt the “Ordering Points To Identify the Clustering 
Structure” (OPTICS) [6] algorithm to regroup the realistic 
vehicular data of the previous step into clusters for the 
detection of real-world events; (5) We demonstrated that the 
computation of the shortest route influenced by the detected 
events using the A* algorithm [7] coupled with our 
“DirectionnalWeight” heuristic (DW) is more efficient than 
Dijkstra’s algorithm [8]. 

The remainder of the paper is organized as follows. 
Section II, provides a brief overview of related work and 
compare them with our platform. Next, the section III displays 
“Virage Simulation” our road simulator. Then, we present the 
AMNAM platform in section IV. Finally, in section V, we 
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show AMNAM’s simulation results and conclude this paper in 
section VI. 

II. COMPARISON WITH OTHER TOOLS 

A. Google Maps 

Google Maps (“GM”) is a free online mapping platform 
allowing the user to obtain the route from the users’ position 
to a given destination. For this paper, we will compare our 
platform to the GM’s smartphone application. One main 
feature of the latter is the computation of the optimal route 
using its available traffic data. As AMNAM, GM’s data is 
crowdsourced meaning that acquiring information is done 
using the users’ devices. What distinguishes our approach to 
Google is that the data is natively handled by DSRC-enabled 
vehicles; our platform automatically sends relevant data 
without any smartphone. Also, road events are sent via DSRC 
which improves speed, reliability, and security over 3G/LTE 
connectivity. In addition, our platform can handle a wider 
range of events detected by vehicles like potholes, a tree 
blocking a lane, etc. 

B. Waze 

This smartphone application focuses more on road events 
via crowdsourcing. Firstly, Waze asks the user for a 
destination then displays the path along with diverse facts 
about the upcoming road. Traffic, roadwork, potential dangers 
and more are notified to the user as he progresses along the 
itinerary. Data used to detect events like these are entered 
manually on the application by the users. For example, a 
driver will notify others with Waze if he sees a car parked on 
the side of the highway. Our platform is fully automated and 
doesn’t require any human interaction for the collection of 
road data which improves its precision and veracity. As a 
matter of fact, the proportion of vehicles or computers sending 
false information is significantly lower than malicious 
humans. The road safety is improved with our platform since 
the driver doesn’t have to signal any event. Also, with DSRC, 
communication delays can be as low as 100 ms [9] which is 
notably lower than Waze who relies on human reactions.  

III. “VIRAGE” VEHICULAR DATA SIMULATION 

Our platform relies on data generated by VSIMs. VS has a 

partnership with LRIMa in order to supply the information 

required to test and evaluate the effectiveness of our platform 

and our algorithms. We modified the usual behaviour of 

VSIMs to obtain files containing raw data from our 

simulations. We added a periodical vehicular data log system 

to export each instant.   

Our simulation scenario is based on an urban road network 

containing about a hundred roads forming a small city. This 

fictional city is surrounded by a highway. The proportion of 

vehicles having DSRC capabilities is configurable; they will 

drive along in an autonomous manner perfectly obeying road 

codes and laws. 

VSIMs allow an operator to drive an “interactive” 

simulation car to explore and investigate the behaviour of the 

autonomous virtual vehicles. 

 
Fig. 2. Virage Simulator in action 

For our purposes, obstacles can be placed anywhere on the 

map of a scenario. We define obstacles as objects whose sole 

purpose is to disturb driving conditions. Three different 

categories of obstacles were implemented in VSIMs: potholes, 

blockages and variators. While potholes are solely for 

detection reasons and don’t impact the vehicles in anyway, 

blockages, as their name implies, completely or partially 

obstructs the road they’re placed on. Variators reduces the 

maximum speed limit of all vehicles in a sphere of influence 

with a given radius. All these obstacles have a configurable 

detection radius which allows DSRC-enabled to identify them 

within a given area. Unfortunately, since obstacles aren’t truly 

natively supported by VSIMs’ core infrastructure, some 

functionalities cannot be observed. The blockages are mostly 

avoided by the autonomous vehicles and the variators can’t 

effect of the latter because their behaviour is final. 

When the user presses on the horn of the interactive car, 

the simulator will log various information at regular intervals; 

the amount of time VSIMs save data per second is called the 

poll rate and is measured in Hertz (Hz). The latter can range 

from 0.2 Hz (one poll per 5 seconds) to 10 Hz (10 polls per 

second). The presence of a vehicle in the detection radius of 

an obstacle causes an event to be logged at each poll. 

Additionally, for every poll—regardless of the presence of an 

event—the vehicle’s raw data like its speed, position, current 

road, etc. are logged in a separate file. 
The data specified above is given as input for the AMNAM 

platform described in the following section. 

IV. AMNAM (“AMNAM N’EST AUCUNEMENT 

MAPS”) 

A. Platform’s Input 

After a recording session, VSIMs output 32 “Comma 

Separated Values” files (.CSV) containing the raw data of the 

simulation. There are three types of CSVs in those files: 

 

1) Initialization File: The simulation initialization file logs 

information at the beginning of a recording. It contains the 

number of vehicles, their ID, their brand and model, and 

specifies if they are capable of DSRC communication. 

2) Event Detection Log File: Each time a DSRC-enabled 

vehicle is inside the detection radius of an obstacle, an entry is 

added to the event detection log file. These entries are 

structured the following scheme: 



TABLE I.  EVENT FILE STRUCTURE 

# Info # Info 

0 Detector Vehicle ID 4 Position Y (m) 

1 Detected Obstacle Type  5 Position Z (m) 

2 Simulation timestamp (s) 6 Road ID 

3 Position X (m) -- — 

 

3) Periodic Files: Depending on the configured poll rate, 

VSIMs will record specific information about the vehicles and 

log in what we call a periodic file. Each vehicle has its own 

file. The interactive car is also saved in a periodic file. Its 

structure is described in the table below: 

TABLE II.  PERIODIC FILE STRUCTURE 

# Info # Info 

0 Vehicle ID 10 to 13 Acceleration 

X/Y/Z/Norm (
𝑚

𝑠2
) c 

1 Simulation timestamp (s) 14 Friction coefficient 

2 to 4 Position X/Y/Z (m) a 15 Current Road ID 

5 to 9 Speed X/Y/Z/Norm (m) b 16 Speed limit (Km/h) 

9 Orientation ([−𝜋, 𝜋]) -- — 

a. The position is measured in reference to the world. 

b. The speed is relative to the vehicle: the Y coordinate vector is the speed forward or backwards; the X 

coordinate vector is the speed on the side present in drifting; the Z coordinate vector is vertical 

movements like ramps or speed bumps. 

c. Acceleration has the same frame of reference as speed. 

 

4) AMNAM Files: All the data harvested from VSIMs are 

stored in an AMNAM file. Based on the zip architecture, the 

latter allows us a better manipulation of data files along with 

the ability to save the output of our different analysis. 

 

B. Differences between a real world implementation and 

simulator data 

1) Real World Implementation: The methodology of our 

platform, in the physical world, is described by the following 

steps: 

i. The detection of an event by a vehicle; 

ii. The transmission of the latter to the central 

infrastructure via DSRC’s service channels; 

iii. The analysis of the pool of events resulting in the 

creation of a global perception of the road. 

iv. The broadcast of the new data contained in the 

calculated perception to the vehicles. 

The first step, the detection of an event from a vehicle’s 

point of view, differs from the global detection scheme 

proposed in this paper. We suppose that vehicles are able to 

reliably (but not necessarily perfectly, see section 3.C) identify 

events within their vicinity. The detection at a vehicular level 

(which implies research in sensors, computer vision, AI, etc.) 

is beyond the scope of this project. Once an event is detected, 

it is sent to the platform for analysis using the DSRC protocol. 

We once again suppose that the data transfer is sufficiently 

reliable, but it is not required to be perfect. Then, this event is 

put together with all others and analyzes them, attempting to 

extract useful information for the vehicles on the road 

network. The goal is to send events to the infrastructure to 

inform others. A real world implementation of the platform 

would have as sole purpose the analysis of those events 

reported by vehicles. However, due to the fact that we use a 

simulator instead of realistic vehicular data, additional steps 

must be added to the process. 

 

2) Implementation in simulations: There are two main 

differences between a real world implementation of the 

platform and our platform developed for simulations. The first 

relates to the structure of the process. The second relates to the 

analysis itself. 

During a simulation, additional steps must be executed in 

order to fit the real world model described in the previous 

section. As such, the transposition and obfuscation steps are 

required. The former allows events to be in the same format as 

one would expect from a car and the latter adds error to the 

data in order to mimic the uncertainty and errors that can 

happen. (see IV C. 1 and IV C. 2) 

The analysis is also handled differently due to technical 

restrictions. As simulations cannot be run over a large period 

of time (15 minutes for VSIMs), the analysis is performed all 

at once, disregarding the fact that events are not simultaneous. 

In the real world, some events may come and go as time goes 

on, e.g. traffic and roadblocks. As the simulator does not allow 

dynamic creation, creation or displacement of obstacles as the 

simulation is running. 

C. AMNAM’s analysis process 

1) Event Transposition: The first step in the analysis 

process, transposition, consists of taking the raw data 

generated by the simulator and formats it to obtain a better 

representation of what vehicles would truly send. 

VSIMs collect logs for the obstacles’ detection in a way that 

every vehicle in the detection radius of an event will raise a 

“reported event,” regardless of the previous simulation ticks. 

This means that the same event will likely be reported 

multiple times over several consecutive ticks. For example, a 

pothole can be “detected” 28 times over a period of 2.3 

seconds. In reality, a vehicle would only raise an event once 

after a detection. In summary, this step trims the data received 

in input. First, events are separated by sources and by type 

into different lists. Then, those lists are sorted chronologically. 

If a reported event is sufficiently close temporally and 

spatially to another reported event in the same list, they are 



grouped together (Further details in section V). For every 

group, a reported event is created having as position and 

timestamp the mean position and timestamp of the list of 

events in the group. This process is repeated until no more 

reported events can be merged. The lists are then put back 

together to form the transposition’s output: a single list 

containing all reported events with the unwanted repetition 

trimmed down. However, these reported events are still far 

from representing our world. The next step, the obfuscation, 

will remedy this issue. 

2) Reported Event Obfuscation: 

a) Event Obfuscation to Mimic Real Vehicles: The output 

of the previous step regroups every detection VSIMs’ vehicles 

make into fewer but concise reported events. In real life 

applications, these events would’ve been sent to the 

infrastructure for further processing. Unfortunately, the 

vehicles in VSIMs are programmed to act perfectly in every 

way. It is fundamentally impossible to harvest data close to 

reality from VSIMs because perfection doesn’t exist in real 

life. The perfect detection hardware of the simulation vehicles, 

their perfect road behaviour and their lossless vehicular 

communication environment are the primary elements 

rendering the simulation data too precise to be useful. 

Hopefully, we developed the obfuscation system to morph 

data into input. The latter introduces errors and uncertainty 

into the transposed information outputted by VSIMs; 

inaccuracies gives reported events a realistic character. To 

obtain these imprecisions, we manipulate several values 

contained in events with different mathematical models as the 

one presented in the following subsection. 

b) Gaussian or Normal Distribution: In nature, according 

to the central limit theorem (CLT), the sum of independent 

variables converges into a normal/gaussian distribution.To 

simulate error factors resembling reality, we propose to use 

Gaussian distributions in some aspects of the obfuscation step 

to give a desired amount of uncertainty to our data.  

 

(1) 

Where: 
𝑥: Random variable to distribute 

µ: The mean of the distribution 

𝜎: The standard deviation of the distribution 

 

c) Developed Obfuscation Parameters: We implemented 

different obfuscation parameters impacting three main 

components of our events: position, type and packet loss. 

Theses parameters allows the user of AMNAM to specify the 

different variables used in the obfuscation process. Here’s the 

detailed description of the three proposed parameters: 

 Position Parameter:  

The position parameter’s goal is to reproduce the 

precision level of the average GPS. Still according to the CLT, 

the sum of every little error in the positioning process results 

in a Gaussian-like distribution [10]. For a real-life 

representation of the GPS data, we will obfuscate the position 

with random normally distributed factors. The user specifies 

the standard deviation (σ) in metres of the Gaussian 

distribution to apply on the x and y coordinates. According to 

the department of defence of the United States of America, the 

average standard deviation is 3.9 metres [11]. 

 Detection Type Parameter:  

A fault in the sensors of a vehicle can lead to a 

misinterpretation of an obstacle. This parameter changes the 

obstacle type of a reported event to another randomly selected. 

The user enters the desired error percentage. For example, a 

5% error rate will randomly change the type of an event with a 

20:1 chance. 

 Packet loss Parameter:  

Since DSRC isn’t fully implemented in VSIMs, the packet 

loss obfuscation parameter allows us to simulate errors in the 

transmission of an event from the vehicle to the infrastructure. 

Comparatively to the type obfuscation parameter, the user 

enters the desired error rate for the wireless communication. 

The obfuscation process will simply delete events who suffered 

from packet loss. 

 

In summary, the obfuscation step adds imprecision to our data. 

This way, we transform our input from VSIMs to better 

represent real life conditions. These transposed then 

obfuscated events are now suitable for analysis. 

 

3) Event Analysis 

The analysis is the step during which the obfuscated events 

are put together in order to generate the platform’s perception 

of the road network. The goal of this step is to undo the 

obfuscation in order to retrieve the original position of the 

obstacles. The way this is done is by clustering the data 

together using the OPTICS algorithm. While this algorithm is 

designed to uncover the structure of a cluster, we are 

interested only in the cluster itself and thus discard that 

information. This algorithm can be applied to any subset S of 

a normed vector space V over the rational numbers ℚ. As 

such, we can use this algorithm to cluster the data points of 

each event, by using the (x, y) coordinate as a vector and the 

norm defined as the standard Euclidean norm. In our 

implementation of the algorithm, we use the square of the 

Euclidean norm instead to eliminate the time taken for the 

square root during the computation of the norm. 

 
(2) 

However, this doesn’t affect the result whatsoever. 

 

The algorithm takes three inputs: a pair of parameters and 

the set of data. The parameters describe the minimal 

requirements for a cluster to be generated. The first parameter 

is the minimal amount of data to generate a cluster (minPts) 

and the second one is the maximal distance between two data 

points to create a connexion between them (ε). OPTICS uses 

the concept of the neighborhood of a data point, that is, the set 

of all data points within distance ε from the point.  

a. Neighborhood of a vector: The set of all points in S 

that are at most ε away from the referential vector. 



I.e. 

 (3) 

 

b. Core distance of a vector: The distance between this 

vector and the minPts-th furthest vector in S relative 

to this vector. Undefined if this distance is greater 

than ε 

c. Reachability distance of from a vector to another. 

The distance between the two vectors or the core 

distance of the second vector, whichever is larger. 

Undefined if the neighborhood of the second vector 

contains less than minPts elements. 

 

The first step is to flag every data point as unprocessed. 

For every unprocessed data point available, if their 

neighborhood contains less than minPts points the algorithm 

marks the point as a singleton. Otherwise, it creates a cluster C 

and adds every vector in S that is within distance ε of any data 

point in C and marks them as processed. The algorithm 

completes when every data point is flagged processed. 

When the algorithm completes, all data points are 

organized in sets of sets, representing each of the clusters of 

reported events. If the clustering succeeds, there would be one 

event per obstacles. 

D. Pathfinding Using Generated Perception 

Pathfinding is a core part of our project. The goal is to 

suggest drivers the optimal route to a given destination. The 

computation of the shortest path is influenced by the detected 

events in the analysis process. A great majority of pathfinding 

algorithms proposed in the literature are based on graph 

theory. 

Firstly, the road network of the VSIMs map must be 

converted into a graph in order to find the optimal route. The 

resulting graph must be directed and weighted. Its nodes are 

the intersections of the map while its edges are the roads 

linking them. Each resulting road node in the map’s graph 

contains additional information like a unique ID and its three-

dimensional coordinates (x, y, z). On the other hand, edges 

also contains a unique ID along with its source node, 

destination node and initial weight. Bi-directional regular 

streets are moralized by two edges in opposite direction and 

one-ways by a single edge. 

Secondly, the initial weight has to be set for each edge of 

the graph. The weight has described in (4), is the ratio of two 

factors. The first ( ) is the Euclidean distance between two 

intersections or simply the length of the road link the latter. 

This road’s speed limit ( ) is the second factor.  

 𝑔 =
Δ𝑟

𝑣𝑒
 

(4) 

Their resulting ratio, the estimated time of travel, is the 

weight of the edge (𝑔). 

Lastly, to obtain the shortest path, we use the A* 

Pathfinding algorithm. Relying on graph theory, this algorithm 

is one of the most efficient of its kind. The addition of DW 

further improves the performance of the latter. DW, as stated 

in its name, guides A* in its node search by adding an extra 

value, the “h score” (ℎ), to the weight of the edges (5). 

𝑓 = 𝑔 + ℎ (5) 

The 𝑓 score is the final weight attributed to the edges.  

The advantage of DW is that fewer nodes have to be explored 

by the algorithm to find the shortest path resulting in faster 

computation times. The h score is computed as follows: 

ℎ(𝑛) =  
√(𝑥′ − 𝑥)2 + (𝑦′ − 𝑦)2

𝑣𝑚𝑎𝑥
 

(6) 

Where: 

𝑛: The node to add the extra weight 𝑣𝑚𝑎𝑥: Max speed allowed in the 
road network 

𝑥′: The x coordinate of the 
destination node 

𝑦′: The y coordinate of the 
destination node 

𝑥: The x coordinate of the node 𝑛 𝑦: The y coordinate of the node 𝑛 

Implemented in AMNAM, DW decreases the number of 

nodes explored by A* resulting in faster computation times. 

The output of our modified A* algorithm is a list of nodes. By 

finding the edge linking each pair of nodes together, we’re 

able to reconstruct the path. The final route gives in order the 

roads and intersections to go over until the driver reaches 

destination. 

 

V. SIMULATION RESULTS 

A. Simulation Input 

To obtain the results in the next subsection, the following 

input parameters were specified: 

Our modified scenario was executed during 900 seconds 

(15 minutes). The map contained in the scenario is 5255 

metres high and 8106 metres wide. 

Six (6) obstacles of pothole, blockage and variator type 

were placed on the map at the coordinates in the subsequent 

table. Each obstacle has a detection radius of 15 metres. 

TABLE III.  OBSTACLES INITIAL CONDITIONS 

Obstacle ID Obstacle Type Position (X, Y) in metres 

1 Pothole (-228.57; 321.01) 

2 Pothole (-37.07; 554.45) 

3 Blockage (-326.07; 388.92) 

4 Blockage (283.49; -7.46) 

5 Variator (-174.72; 628.46) 

6 Variator (374.26; 456.3) 



 

Along with the obstacles, 30 vehicles, including the 

interactive car, where rolling along autonomously in 

“Simton.” We used a 70% DSRC penetration rate (DSRC 

capable vehicles ratio) along with a simulation poll rate of 

10 Hz. The initial position of the 29 other vehicles was 

assigned randomly in the top left quadrant of the city. 
We drove the interactive car far out of the road to avoid 

any “interference” with the autonomous traffic. In our 

simulations, the latter had the tendency of escaping the city by 

wandering on the highway surrounding the it. The highway 

didn’t contain any obstacle, so cars rolling on it will not report 

events. A low event count is the cost to pay for the ability to 

access every part of the network.  
During transposition, we group two reported events if they 

are within one second of each other and if the distance does 

not exceed 30 meters. 
For the obfuscation process, we used a 3.9m standard 

deviation for the position parameter; a 7.5% error for the type 

parameter; and a 5% packet loss. 
 

With this input, we obtained the results stated in 

subsection B. 

B. Generated Results 

1) AMNAM Interface 

 
Fig. 3. AMNAM’s visualization window with vehicles, a detected pothole 

and an example path. 

2) Algorithmic Accuracy 

a) OPTICS 

The algorithm used for clustering the events in order to 

recover the original obstacles gives good result. For the 

following results, every data point is created by evaluating the 

average of a large number (at least a thousand) of repeated 

evaluation. 
Using transposed data, and obfuscating it using different 

parameters, we found that the probability that clustering will 

be done successfully, that is, every reported event is properly 

associated with an event, describes a sigmoid function as 

shown in fig. 4, likely reminiscent of the Gaussian function 

used during obfuscation. 

 
Fig. 4. Impact of the standard deviation during obfuscation on the 

capacity of detection 

The average error can be generated similarly, as shown in 

fig. 5. This is calculated by looking at the events and the 

obstacles and trying to match each event to an obstacle. We 

then take the average of the distance between the two for 

every event. 

 
Fig. 5. Impact of the standard deviation during obfuscation on the average 

distance between an event and its corresponding obstacle 

Fig. 5 shows us that removing events tend not to affect the 

precision of the analysis step, but adding type error does. This 

is likely due to the fact that the change of type generates can 

potentially create an unforeseen event which would increase 

the overall average. As the standard deviation during 

obfuscation increases, however, it becomes harder for those to 

form, due to the increase in distance between points in a 

cluster, bringing the average distance down to a level 

comparable to the other two types of obfuscation shown in the 

graphic. 
Considering the small number of events generated by 

vehicles due to technical constraints imposed by VSIMs. A 

larger amount of data would facilitate clustering, which in turn 

would allow us to input more restrictive parameters for 

OPTICS. Those would then make it harder for aberrations to 

tamper with the perception. 
 

b) Algorithmic Performance of A* with DW 

The pathfinding system we proposed in AMNAM performs 

just as expected. With DW, its efficiency is indeed greater 

than Dijkstra’s Pathfinding Algorithm. In table IV, we 

compare the two algorithms in terms of explored nodes. A 



lower node count makes the algorithm more efficacious. To 

give an order of magnitude, the whole network is made of 354 

nodes where 252 of them composes the inner city. 

TABLE IV.  A* + DW PERFORMANCE COMPARISON TABLE 

  Nodes explored   

Path length 

(m) 
Dijkstra A* + 

DW 
Comments 

320.36 26 8 Route through pothole obstacle 

404.79 34 18 Route clear of obstacles (CE) 

611.38 45 17 Route through variator, pothole 
avoiding blockage 

1385.71 77 69 Route through city 

7053.20 164 140 Route from sector with obstacles to 

highway 

16,293.58 153 143 Complete highway cycle— CE 

VI. CONCLUSION 

In conclusion, we developed the AMNAM Java platform for 

the detection of road events from vehicular data and for the 

computation of the optimal route influenced by the latter. We 

started by introducing DSRC and its SCHs and their potential 

applications for road event transmission. We compared our 

research to related work. After, we presented our modified 

VSIMs used to harvest vehicular data. Then, we showcased 

the AMNAM platform. Finally, we show our simulation 

analysis results. In this paper, we demonstrated that the 

detection of road events is possible with our proposed 

algorithms. For future work, we aim to add real time 

capabilities to our platform to demonstrate its capabilities in 

real world usages. 
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