
978-1-7281-4275-3/19/$31.00 ©2019 IEEE

Smart Traffic Light Scheduling Algorithms

Jihene REZGUI, Mamadou BARRI and Reiner GAYTA

Laboratoire Recherche Informatique Maisonneuve (LRIMa)

Montreal, Canada
 jrezgui@cmaisonneuve.qc.ca

Abstract— Traffic lights have and always will be necessary for
the safety of the traffic on the road. However, the time cycles of
these traffic lights are based on premeditated computations and
not real time data. These scheduling methods can often be
inefficient and therefore lead to traffic congestions. In this paper,
we propose three different Smart Traffic Light Scheduling (STLS)
algorithms that were tested on our Isolated Intersection Simulator
(IIS) Java platform. IIS simulates real-life traffic flow on an at-
grade junction with different traffic light scheduling algorithms.
We integrate a heuristic to our proposed algorithms that takes into
account, not only the density of the junctions like traditional
schemes, but also the waiting time of the vehicles. In addition, it
can also give the right of way to emergency vehicles that need
immediate passage through the intersection. Throughout
extensive simulations, IIS displays the efficiency of our different
STLS algorithms in terms of managing the intersection and
avoiding congestions. For instance, our simulations demonstrated
a tremendous decrease in the average delay time when compared
to regular traffic lights. In fact, cars on the intersection using our
STLS algorithms performs 3 times better. On top of this, thanks
to our algorithms, the average speed of the cars is nearly doubled
and the number of static cars on average are halved.

Keywords—ISS; Smart Traffic Light; STLS; Average Traffic
Density; Traffic Simulator; Junctions; Average Waiting Time.

I. INTRODUCTION

Since the late 1800s, traffic has been utilized in order to
manage the circulation of vehicles in a safely manner. With the
growing number of cars on our roads, problems such as traffic
congestions and gridlocks have been increasing exponentially.
In fact, in modern large cities such as Toronto and New York,
congestion can add up to around 60% of extra travel time to
one's commute [1]. Furthermore, congestion is a major catalyst
for global warming. The more time a car spends on the road;
the more CO2 it produces. By reducing the amount of
congestions, we will effectively reduce our emissions.
Therefore, by increasing the average traffic speed by
approximately 20 miles per hour, we reduce our CO2 emissions
by 21 metric tons every month [2]. These problems demonstrate
the necessity of a more efficient traffic management system.
Traditional traffic lights no longer meet our needs, as they do
not take into account the current state of the traffic it is trying
to manage. Thus, they cannot fulfill the specific needs of every
intersection.

We propose the use of Smart Traffic Lights (STL’s) in the
place of time-based traffic lights. STL’s, unlike regular traffic
lights, will be connected to a group of cameras or sensors
watching over the intersection. Thanks to these cameras or
sensors, the traffic lights will be able to collect real time data

on the cars on the intersection and adjust the flow accordingly
in order to maximize traffic flow.

Many have attempted to resolve this problem by using
several algorithms that acknowledge the needs for optimal
traffic flow. With our STLS algorithms, we have achieved
improvements on algorithms discussed in prior researches in
ways that are explained in the following section.

Our contributions in this paper can be summarized as
follows: (1) We introduce our Java platform, called “IIS” [3]
which simulates several intersections and compares different
variations of our STLS algorithms; (2) We propose algorithms
in order to increase the flow of traffic; (3) We demonstrate the
effectiveness of the improvements made with STLSDT (Smart
Traffic Light Scheduling based on Density and delay Time)
heuristic on our IIS platform.

Section II provides a brief overview of related work and
compare them with our platform. Section III displays our
intersection traffic simulator (IIS). Section IV presents the
different variations of our STLS algorithms. Section V shows
IIS’s simulation results and Section VI concludes our paper.

II. RELATED WORK

This section is divided into two sub-sections. The first one
presents other attempts at the making of traffic management
algorithm and the second one explains the diverse and simple
ways our algorithm can be implemented in the real world.

1. Traffic management algorithms

A. Dynamic Coded Algorithm

The authors in [4] present a dynamic algorithm for the
traffic management of an intersection. Similar to us, they use
traffic density to schedule the traffic lights. However, one major
flaw in their simulation, which is a four-way junction similar to
that of Fig. 1, is that only one traffic light at a time can be green.
This alone cuts circulation in half, as nothing really prevents
two opposing lanes from advancing at the same time.

Fig. 1. A Four-way junction with a light for a single lane

Another weakness of their algorithm is the fact that they
ignore the traffic densities of lanes with the green light. By

doing so in a four-lane intersection, it amounts to simply
diminishing the traffic light timing cycle, which has been
proven to be effective in urban areas [5]. Their improvements
would therefore be a result of a shorter time cycle instead of a
smart traffic algorithm and their results would not apply to most
of real-life situations. However, in IIS, we simulate and test
intersections that are similar to today’s traffic systems.

B. Intelligent Traffic Light Controlling Algorithm

In [6], the authors present a traffic management algorithm
based solely on traffic density. This presents a major problem,
as it is very common for four ways junctions (which is what
they based their algorithm on) to be comprised of two major
lanes and two minor lanes. It is therefore possible for the major
lanes to constantly have a higher density than the minor lanes.

For example, if there was only one car in the minor lanes
and the major lanes always had at least two cars, the major lane
will always have the green light. Sure, this will provide the
maximum possible flow; however, it will also result in having
that one car waiting for an indefinite amount of time. To resolve
this issue, we have also taken into account the total delay time
of the cars on the intersection.

Another problem comes with them ignoring the types of
vehicles in the intersection. Thus, unlike in our algorithm,
responding emergency vehicles are not taken into account and
these vehicles would have to hope that the lane they are in has
the higher density of the four.

2. Ease of Integration of STLS algorithms in existing
technologies

A. Artificial Intelligence: Computer Vision

Our simulator relies on traffic data generated by our IIS
platform. However, with the multiple advances made in
Artificial Intelligence, many computer vision algorithms such
as YOLO [7] have been optimized and proven capable to
recognize cars in video footage. For instance, many researches
have shown great results considering the recognition and the
counting of cars in an intersection or on a highway [8].

Results of around 95% accuracy were presented in the
Image-base Vehicle Analysis using Deep Neural Network paper
[8]. Based on these results, a possible real-life application
would be installing cameras on an intersection and using them
to count the cars and therefore the density of each lane. This
collected data can be used in our STLS algorithm in order to
manage the traffic lights.

B. VANETs in the Urban Environment

An alternative to using computer vision AI in order to count
the car density and the average delay time is to use a vehicular
ad-hoc network (VANET) [9] which can provide us with data
of different car characteristics such as position, delay time and
speed.

These VANETs can be used in order to create an Intelligent
Transportation System (ITS) by taking the data, analyzing it
with our STLS algorithm and sending the output scheduling to

nearby traffic lights through the Dedicated Short-Range
Communications (DSRC) channels. These channels have been
assigned by the US Federal Communication Commission
(FCC) department 75 MHz of bandwidth at 5.9 GHz and have
an approximate range of 300 meters. These unique frequencies
ensure that inferences with other channels are minimized.

Considering the fact that many vehicles are already
integrated in the VANETs systems, it could prove to be more
cost effective than installing cameras on each intersection as
proposed in section A. VANETs can therefore be an efficient
way to collect data for our STLS algorithm.

III. ISOLATED INTERSECTION SIMULATOR (IIS)

1. Simulation results

Vehicle parameters: In our simulator, cars are generated with
the following properties : car action (turn left, right or go
forward), car direction (north, east, south or west), vehicle
image (an array of images for aesthetic purposes of the
simulator) and average speed (random values that follow a
certain distribution based on real life data).

The only property, which has an equiprobable set of values,
is the image property. Every other one of them has a different
probability distributing which is explained in the Vehicle
behavior section.

Every car is generated with a certain rate which was
determined by us based on real life data from the Montreal City
Statistics Bureau [10]. In fact, we took the average appearance
rate of the cars at different intersection at peak times of the day
(7:30 in the morning and 18:00 in the evening). We used three
different intersections for our computations: Cavendish / Saint-
Jacques, Beaubien / Papineau & Notre-Dame / Sainte-
Catherine. From these busy intersections, we deduced an
average appearance rate of 0.788 vehicles per second. We then
use Gaussian distribution to determine when a car appears.
With this distribution, we are able to have varying time
intervals between car appearances whilst also keeping our
desired average appearance rate. 0.788 vehicles per second was
the rate used for our simulations, but this parameter can be
modified as well as other parameters explained in the following
section.

Simulation Parameters: In order to cover most of the real-life
situations, IIS enables us to modify many different parameters
of the traffic flow during the simulation.

These parameters include the appearance rate of the vehicles,
whether or not a certain lane has abnormal traffic, which is
explained further on in this section, the average speed of the
generated vehicles and the number of vehicles generated during
the simulation. The appearance rate ranges from 0.2 to 2.0 cars
per second. The cars can have a minimum average speed of
10km/h and a maximum of 150km/h. Finally, the maximum
number of cars generated is infinity, thus it can simulate traffic

for as long as we need it to. Changing these parameters can have
a drastic effect on the results. The effects of these modifications
are shown in section V.

2. Vehicle behavior

Simulator Limitations: The physics of our simulator can be
summed up as follows: Physics concepts such as friction with
the tires, acceleration and decelerations are not taken into
account. This choice was made because these concepts only
cause a very small variation in our results and thus it is not
pertinent for us to take them into account.
We assume that every car of the intersection is either static or
is moving at the set average speed. This assumption is plausible
because we make that assumption for both the simulation with
our algorithms and the simulation that contains regular lights.
Both limitations will therefore not discredit our results.
Car actions: Every generated car has one possible outcome of
the three mentioned in the A Section: turn left, turn right or go
straight forward.
Probabilities and rates: In the Section A, we mentioned that
every car is generated with a set of parameters. All of them but
the image parameter has different probabilities and rates
which are implemented as follows:

A. The appearance rate

The appearance rate has a 10% probable variation from our
initial value discussed in the Platform Input Section that is
based on real life data.

B. Abnormal traffic
Abnormal traffic happens when there is an excessive rate of

incoming car from one particular direction. This can happen in
real life when there are multiple construction sites around the
intersection thus the flow is bigger only in certain directions.
Abnormal traffic affects the rate of car appearance and enables
our simulator to test algorithms even when the traffic flow is
not regular. To do that, we quadruple the probability of a car
appearing in a certain lane.

C. Actions

In order to make our simulator realistic, the three actions of a
car (turn left, turn right or go straightforward) are not
equiprobable. For instance, there is a higher chance of a car
going straight forward then turning left or right. In IIS, based
on results from real life data [10], we decided to give cars a 30%
chance to turn when they appear (15 % to turn left and 15% to
turn right).

1) Turning mechanism
In order to make our vehicles turn, we make their images

rotate at a certain speed relative to their movement speed until
it is done turning. As for the car’s movement speed, we

gradually transfer its speed on one axis (x or y) to the other axis.
For example, if a car were moving towards east (which means

that its speed is positive towards the x-axis) and were to turn

left (which means that its speed would become negative
towards the y-axis), the car’s speed on the x-axis will gradually
decrease until the car is aligned with the proper lane. The car’s
speed on the y axis would then gradually decrease (because its
final speed will be negative) until its absolute value is identical
to its original speed.

2) Collision avoidance:
Our first problem with collisions was with cars not being able

to detect the car in front of them. To prevent cars from clipping
inside of each other when one stopped; we gave each car the
position of the car in front of it and made it stop when its
distance to the car in front got smaller than a car length.

In order to prevent collisions whilst turning, we gave the
position of oncoming vehicles to cars turning left and made
these cars stop until the oncoming vehicle got out of its path.

IV. SMART TRAFFIC LIGHT SCHEDULING

ALGORITHMS

1. Traditional Traffic Lights

Traditional traffic lights usually rely on timed cycles in
order to determine when to change the traffic flow. Because of
this, our simulation of an intersection with traditional lights
does the same. These lights are on a shorter 51-second cycle (24
seconds green, 3 seconds yellow, 24 seconds red) which have
been proven to be more effective in urban cities [5]. We gave
the traditional lights as many advantages we could in order to
further prove the effectiveness of our algorithms.

2. STLSD

Fig. 2. An IIS empty intersection showing the waiting zones

Waiting STLSD is the variation of our STLS algorithm that
is solely based on traffic density, similar to ITLC, a traffic
management algorithm [6]. Our intersection is divided into 8
different lanes (as shown in figure 2), which all contain a
“waiting zone”.

Cars found in these “waiting zones” have yet to pass
through the middle of the intersection. Depending on which
lane they are on, each vehicle found inside a “waiting zone” is
added to one of two lists: HorizontalDensity or VerticalDensity.
These two lists are then compared, and the algorithm verifies if

the list with the higher density is the one with the green light. If
so, the algorithm does nothing. If not, the algorithm changes the
flow of traffic by giving the green light to the lanes that have
the highest density. At the end of our calculations, the lists are
wiped clean and the algorithm waits 5 seconds before
recalculating the densities in order to avoid constantly changing
lights.

This algorithm maximizes flow but could cause an
abnormally high delay time for a vehicle that finds itself in the
wrong place at the wrong time.

3. STLSDT

STLSDT is a variation of our algorithm that takes traffic
density and the wait times of each car into account. The way we
calculate the density is identical to the way we do it in STLSD.
What differentiates STLSDT from STLSD is the way they
manage the traffic. Similarly, this algorithm will give the green
light to the lanes with the higher density.

However, if it realizes that the delay time of a car (the
amount of time a car is stood still) has exceeded a certain
amount of time (currently set to 10 seconds, but can be
modified) and that that car still isn’t moving, it will switch the
traffic flow of the intersection in order to allow the waiting car
to advance. This method minimizes the delay time of cars to the
detriment of optimal traffic flow.

Alg.1. STLSDT algorithm

4. STLSDE (D or T)

This algorithm is a variation of STLSD and STLSDT that
takes into account emergency vehicles. It works in the same
way as the previous two algorithms. However, when it detects
an emergency vehicle in one of the waiting zones, it will ignore
the densities and the waiting times and ensure that the
emergency vehicle has the green light at all times.

When it detects two emergency vehicles in adjacent lanes
(which means that they both cannot advance at the same time),
the one that initially has the green light will continue to have it
until it is out of the waiting zone. Once it is out of the waiting
zone, the green light is given to the other lane containing an
emergency vehicle.

V. SIMULATION RESULTS

1. Simulation Input

To obtain the results in the next subsection, the following
input parameters are specified:

Our IIS simulation was executed for around 60 seconds (1
minute) depending on the car appearance rate. The dimensions
of the intersection are 100 meters by 100 meters. The simulated
cars are 4 meters long and 2 meters wide which are the
dimensions of the average sedan [11]. In addition, 60 cars are
generated for each simulation.

With these input parameters, we obtained the results stated
in subsection B.

2. Generated results

A. IIS Interface

Fig. 3. IIS’s Interface with 3 types of simulation of different
STLS algorithms

B. Algorithms performance in different situations
To properly test our algorithms, we wanted to simulate traffic
at different situations.

i) Rush-hour with normal traffic
During the rush-hour situations, we set our rate appearance

to 0.789 cars / second as determined in the section A based on
real life data.

Fig. 4. The average speed (m/s) with abnormal traffic.

\

Fig. 5. The number of static cars on the intersection in real

time.

Fig. 6. The average waiting time (seconds) in real time.

In Fig.5, we can see that the regular traffic light algorithm
has higher local maximums. In fact, the local maximums for our
STLSD and STLSDT are around 50% less than those of the
time-based algorithm. We can also observe that these two
algorithms perform nearly identically. The only differences that
we can spot is that the STLSDT seems to have slightly higher
maximums than STLSD. This phenomenon is explained by the
fact that our STLSDT gives the green light to cars that have
been waiting for a long time. This behavior can sometimes
hinder traffic flow.

In Fig. 6, the curves of our STLS algorithms show that with
regular traffic lights, the average waiting time goes up to 7
seconds on average for every car. On the other hand, our
STLSD algorithm shows a very low maximum average of 2
seconds. However, our STLSDT algorithm has an even lower
average of only 1 second. As we can see, by sacrificing a bit of
traffic flow, STLSDT shows a better performance than STLSD.
These graphs show unusually low delay times (1s-2s) because
of the fact that many cars that are counted have a delay time of
zero seconds. This drastically lowers their averages.

ii) Rush-hour with abnormal traffic
When a traffic flow in a particular direction is substantially
higher than the flows in other direction, the intersection is
submitted to abnormal traffic. These situations often happen in
real life when roads are closed due road woks. In order to
simulate these situations, we took the horizontal lanes (east and
west) and quadrupled the number of cars that would appear on
them.

Compared to the Rush Hour with normal traffic results, our

STLSDT algorithm shows better results than our STLSD
algorithm, which are still both better than the normal traffic
lights scheduling system. In fact, STLSDT has slightly fewer
static cars, a better average speed and a lower average delay
time. The following graphs show our extended testing in an
abnormal traffic flow situation.

In Fig.4, we see that both STLSD and STLSDT performed
somewhat equally and boast far superior results than the regular
scheduling system. With our algorithms, the average speeds of
all cars in the intersection never reached below 5 m/s whereas
the average speed for the cars in the intersection regulated by
regular traffic lights is only around 7 m/s. In fact, there is even
a moment in the simulation where the average speed of cars in
the regular scheduling intersection reaches 0 m/s. This indicates
that none of the cars in the simulation was moving. This
unwanted situation never happens in both simulations running
our algorithms.

Fig. 7. The average speed (m/s) with abnormal traffic.

iii) Rush-hour with emergency vehicles:

Fig. 8. The average speed delay time (s) of all the simulated
cars

Fig. 10. The number of static cars on the intersection in
real time

Fig. 9. The average speed delay time (s) of all the simulated cars

Fig. 7 shows us that the cars in the junction manage to reach a
higher maximum speed more often than our STLSD. In Fig.8,
we see that both STLSD and STLSDT have the same maximum
delay time of 2 seconds.

However, STLSD reaches that maximum at an earlier time than
STLSDT and, for most of the simulation, STLSDT has an
identical, if not lower average delay time than STLSD.

Finally, as shown in Fig.9, we see both algorithms performing
nearly identically.

Fig. 11. The delay time (s) of all cars in real time

Fig. 12. The average speed (m/s) in real time.

As for the simulations that give priority to emergency vehicles,
if we compare these results to our first simulations, the only
major difference we can distinguish is a decrease in
performance from our STLS algorithms. This is due to the fact
that giving priority to emergency vehicles hinders the traffic
flow. A drop in performance can be seen in both Figures 10 and
11. On all three graphs, there is a spike near the 15 second mark
for our STLSD algorithm. This may suggest that this algorithm
is less efficient when emergency vehicles are considered.

Figure 12 shows drastically lower average speeds for both
algorithms when compared to the average speeds of situation
a). Our STLS algorithms have slightly lower local minimums
(average local minimum of 7m/s compared to the 8m/s of
situation a)). On top of that, they seem to reach these minimums
at a much higher frequency. However, this decrease in
performance is only a minor one and we believe that having a
slightly less optimal traffic flow is fair price to pay in order to
ensure that emergencies responders get to their destination as
quickly as possible.

I. CONCLUSION

In conclusion, we developed the IIS Java platform for the
simulation of traffic flow on an isolated intersection. This
platform helped us develop different STLS algorithms that help
optimize traffic flow and minimize the delay time for road
users. We started by introducing the real-world possible
applications for our algorithms and presented prior researches
on the subject. After, we presented our IIS platform, explained
how our STLS algorithms function. Finally, we showcased their
efficiency at managing different traffic flows. In this paper, we
demonstrated that isolated intersections can be more efficiently
managed by our STLS algorithms rather than those in previous
researches and those used today.

ACKNOWLEDGMENT

This research was financially supported by the “Fonds
Québécois de la recherche sur la nature et les technologies
(FRQNT).” We would like to thank Caroline Houle, teacher at
Collège de Maisonneuve, for her valuable comments.

REFERENCES

[1] "TomTom TrafficIndex:Toronto", TomTom.com,
2019, [Online],
https://www.tomtom.com/en_gb/trafficindex/city/tor
onto, [Accessed: 09/August/2019].

[2] M. Bsrth and K. Boriboonsomsin, “Traffic
congestion and greenhouse gases”, Access Magazine,
2009.

[3] IIS platform by M. Barri R. Gayta and J. Rezgui on
GitLab,
https://gitlab.com/reinergayta/26lumieresintelligente
s [last visit and update 09/August/2019: open source
code].

[4] A. Kanungo, A. Sharma and C. Singla, "Smart Traffic
Lights Switching and Traffic Density Calculation
using Video Processing", Recent Advances in
Engineering and Computational Sciences (RAECS),
2014.

[5] National Association of City Transportation
Officials, "Urban Street Design Guide: Signal Cycle
Lengths", https://nacto.org/publication/urban-street-
design-guide/intersection-design-elements/traffic-
signals/signal-cycle-lengths/, 2013. [Accessed:
09/August/2019].

[6] M. Younes and A. Boukerche, "An Intelligent Traffic
Light Scheduling Algorithm Through VANETs",
10th IEEE International Workshop on Performance
and Management of Wireless and Mobile Networks,
2014.

[7] J. Redmon , “YOLOv3: An Incremental
Improvement”, University of Washington, 2018

[8] Y. Zhou and al., “Image-based Vehicle Analysis
using Deep Neural Network: A Systematic Study”,
IEEE International Conference on Digital Signal
Processing (DSP), 2016.

[9] I. A. Abbasi and A. S. Khan, “A Review of Vehicle
to Vehicle Communication Protocols for VANETs in
the Urban Environment”, future internet, 2017.

[10] S.T. Le, "Feux de circulation – comptage des
véhicules et des piétons aux intersections munies de
feux",
http://donnees.ville.montreal.qc.ca/dataset/comptag
e-vehicules-pietons, 2019. [Accessed:
09/August/2019].

[11] "Car dimesions of all makes with size comparison
tool", https://www.automobiledimension.com/, 2019.
[Accessed: 09/August/2019].

