
978-0-7381-1316-6/21/$31.00 ©2021 IEEE

Autonomous Learning Intelligent Vehicles Engineering in a

Programming Learning Application for Youth: ALIVE PLAY

Jihene Rezgui, Félix Jobin, Simon Beaulieu, Zarine Ardekani-Djoneidi

Laboratoire Recherche Informatique Maisonneuve (LRIMa)

Montreal, Canada
jrezgui@cmaisonneuve.qc.ca

Abstract – The world of programming is taking a more

and more important place in our lives, yet this field is a

mystery for many people. Due to its appearing complexity, the

majority of young students have many difficulties in learning

programming and the tools for this purpose can be less

attractive as they should. This paper seeks to raise this issue

in learning programming applications and the lack of a

transition between an easy block-based interface to a common

programming language. It also proposes Autonomous

Learning Intelligent Vehicles Engineering in a Programming

Learning Application for Youth, called ALIVE PLAY to

arouse the interest of young students by letting them interact

with a physical vehicle. Additionally, it contains two distinct

interfaces to suit the needs of all ages, including a new built-

in programming language, named AliveScript that helps the

student to make his way from block-based programming to

true programming. Preliminary results demonstrate the

effectiveness of ALIVE PLAY in terms of young students’

interest, curiosity and satisfaction. In fact, they would want to

explore more aspects related to the vehicle, and this is why we

hope that this project reaches many schools in the near future.

Keywords: ALIVE PLAY, controlling physical vehicle,

programming, block-based, AliveScript, WIFI.

I. Introduction

 The recent pandemic has significantly changed the education
field, forcing graduate schools to set aside traditional classrooms
and prioritize online courses. Multiple logistic issues have arisen
from this adaptation for most of the systems that were not already
computerized. Teachers tried to modify their courses at their best,
but the tools at their disposal are not always suited to their needs.
On the other hand, specifically in the programming field, it can be
hard for elementary and high schools to find the best approach to
make students discover this domain, yet it has become the core of
most systems of our society and needs more specialists than ever.
Of course, many platforms are already available on the Internet,
and some of them can really facilitate the journey of a beginner.
However, as far as we are concerned, presently, there is no
affordable application that tries to learn programming by using
IoTs, such as connected vehicles, to enhance the student’s
enjoyment and curiosity. Our ALIVE PLAY project [1] aims to
be the link between the two fields. It is a programming learning
application addressed to young students, from elementary schools
to high schools, connected to an IoT object, more precisely a
vehicle from the ALIVE research project [2-4], that can do actions
according to a simplified code written by the user. We want to
offer students a simple and attractive way to discover the
programming world without having to learn any traditional

programming language, which could seem to be too complicated
at this age. Instead, younger students can experiment their first
program with the block-based interface while older and more
experienced students have access to a more difficult challenge
with the AliveScript interface, a new programming language
specifically designed to be a transition step before real
programming.
 With our ALIVE PLAY project, we have achieved
improvements on programming learning applications targeting
youth in ways that are explained in the following section.

 Our contributions in this paper can be summarized as follows:
(1) We introduce a new JAVA application called “ALIVE PLAY”
and its multiple functionalities; (2) We review related platforms
that guided us in the development of our project and helped us
understand the best ideas and the possible improvements; (3) We
highlight the advantages of the improvements made with ALIVE
PLAY and its IoT compatibility, compared to other platforms; (4)
We present a new way to learn programming by controlling a
physical ALIVE car with easy coding methods; (5) We develop
block-based programming, suited for both elementary and high
school students, and a new programming language, AliveScript,
adapted specifically for high school students, and (6) we explore
our main avenues for ALIVE PLAY’s future, such as creating an
online programming and AI course platform using the tools
provided by this project and his IoT compatibility.

Section II gives a brief overview of related applications and
compares them to our ALIVE PLAY project. In section III, we
describe our whole application and the two programming methods
we have developed. In section IV, we explain in detail the
AliveScript language and its place in our application. Section V
provides information about the physical car and the simulation
implemented in the application. Section VI explores different
possibilities to make improvements in the project, for instance
creating an online programming course platform integrating this
project. Section VII concludes the paper.

II. Related Works and Comparison

Several research projects [5-12] will be explained and compared
to ours. We will be highlighting the differences between the two
works and demonstrating their advantages and disadvantages.

A. Scratch [5] vs ALIVE PLAY

 Scratch is a well-known project that focuses on learning the
basics of programming and has been created by the Lifelong
Kindergarten Group at the MIT Media Lab. Its interface allows
the user to create a simple program by using blocks to facilitate
the concepts of programming. Many challenges guide the young
user to help him discover the multiple possibilities of this

platform, from moving a 2D object to interact with physical
objects.
 Despite the fact that the interface of Scratch is more developed
than ALIVE PLAY’s block-based interface, the main difference
between the two projects is that ALIVE PLAY offers a code-
based interface using an simpler programming language,
AliveScript, with the bloc-based interface, so that the student can
make a better transition towards a more advanced programming
language like Python and Java. In addition, having both interfaces
allows us to reach more students from any age and skill level.
Moreover, our project provides a physical car that was made to
interact with these interfaces which is easier to connect than an
external object from a different team.

B. Codecademy [6] vs ALIVE PLAY
 Codecademy is a great education platform to learn and gain
experience in programming by allowing the user to experiment in
a code-oriented platform while learning the subjects. By
following each step in their courses, the student will understand
many basic concepts in programming as well as some of the most
common programming languages.
 The disadvantage of Codecademy is that it teaches the concepts
of programming via a real language. In fact, it can be hard for a
new learner to fully understand the concepts within the language
because depending on the one the student wants to learn, they can
have a various difficulty level. ALIVE PLAY proposes an easier
approach where the language, AliveScript, is simplified, so that
the user can have a better understanding of the subjects. In
addition, our project includes a physical car, so the user can see a
more concrete result of his program, which is often more
encouraging than seeing numbers or letters in the console.
Another advantage is the block-based interface that we offer to
help younger users to learn the basics of programming, which,
unfortunately, Codecademy does not have.

C. Other projects vs ALIVE PLAY
 In our research for other projects like ours, we found that the
amount of applications that are available to learn basic
programming is large on the web. freeCodeCamp [7] and
W3Schools [8] are really similar to Codecademy by their
exercice-oriented interface; Pluralsight [9], One Month [10] and
Udemy [11] dispense high quality courses but not for free; and
Code.org [12] is highly addressed to young students with their
interactive and captivating block-based interface, just like
Scratch. However, we noticed that none of them had a physical
car or any kind of connected object to appreciate the results of the
user’s program. In addition, our project provides both the block-
based and the code-based interface with a simplified language.
This versatility allows the ALIVE PLAY project to satisfy a larger
group of people than the other applications.

III. ALIVE PLAY Project

 Our project is an application of the ALIVE project in the
educational field. It is a user-friendly interface where the student
can learn basic concepts of programming by controlling one of
the ALIVE physical cars with a Bluetooth connection or the car

displayed on a built-in simulation. For now, the whole project and
the AliveScript language are in French, because we want to aim
at a local public at first, which, for instance, is the province of
Quebec. However, we will surely make a translating option in the
application to allow English-speaking students to easily use our
platform. In this section, we will present the two interfaces that
we have implemented, resulting in two ways of sending
commands to the vehicle, with two distinct levels of difficulty
(see Fig. 1 below).

Fig. 1 The different aspects of ALIVE PLAY

A. Block-based Interface
 Firstly, the block-based interface allows the student to make a
clear and simple code by placing command blocks below each
other. This interface is shown below in Fig. 2. When executing
the code, the program will simply execute each command block,
starting by the highest one and following the order of the blocks.
 This interface seeks to arouse the interest of elementary school
students who have never done programming before. With a
simple way to learn the basics of programming, young students
can explore this high-demanded field and have a better
understanding of it.

Fig. 2 Block-based interface

 There are five categories of blocks. Firstly, the engine blocks
allow the user to send instructions to the vehicle, whether to make
it travel for a given time or turn towards a direction. In addition,
the time block “Attendre” (wait), which is the second block
category, makes the program stop for the given number of
seconds. The third category, loops and conditions, contains blocks
that surround other blocks. It is therefore easy to see which
instructions are contained in the loop or the condition. The block
languages supports the most common loops in programming

languages such as while, do/while and for. It also allows
conditional statements, which gives the opportunity to run
specific blocks when a condition is met.
 The fourth category, math blocks, allows the user to do math
operations and comparisons, from additions to verify if a value is
greater than another. It also contains the blocks “et” (and) and
“ou” (or), which are used to link two booleans values. Finally, the
block “Aléatoire” (random) generates a random number between
the two given numbers. The variable blocks are the fifth category.
They allow the user to create and manipulate variables. The
variables’ type is not specified in the block-based interface. Some
blocks are shown in Fig. 3 below.

Fig. 3 Example of blocks in the block-based interface

There are several advantages to using a block-based interface
for beginners. First, it makes a visual and therefore easily
understandable code for someone who is not familiar with
programming. While written code may seem austere and
confusing, blocks are more welcoming and intuitive. The various
shapes and colors make programming clear and attractive. In
addition, it is faster to drag and drop blocks than typing code,
especially if the user is not completely comfortable with a
keyboard yet. Moreover, with the block list on the side, it is easy
to have an overview of all available blocks. Finally, although
some mistakes can still be made, large parts of programming
mistakes are avoided, like spelling mistakes. Being able to
produce a functioning code encourages beginners and gives them
the confidence they need to later use the code-based interface.

B. Code-based Interface
 Secondly, the code-based interface allows the student to type
code directly in a text area (see Fig. 4 below). This interface offers
a much closer experience to real programming.

Fig. 4 Code-based interface, with simulation visualised

 The code-based interface is suitable for secondary school
students and for those who, after trying the block-based interface,
seek more challenges. It is harder to master, but it covers a wider
range of programming concepts and it leaves more room for
creativity. It allows the user to write programs which, because of
their complexity, could not be created with blocks.

This interface offers more features than the block-based
interface. In addition to the instructions found in the blocks, it
allows the user to make comments, create functions, create
structures and print text in a console. It also offers built-in
methods. The features of AliveScript, the language used in the
code-based interface, are further developed in section IV.

As the user types code, some words are automatically
formatted in order to increase readability. Besides making the
code pleasant to watch, the various colors make the role of each
instruction understandable at a glance. This feature is a major
asset in making programming attractive for youth.

The code-based interface has multiple advantages. It
accustoms the student to the operating mode of real programming
and it offers more possibilities. It also confronts the user with
more potential errors, which leads to the development of error
resolution strategies. It provides additional difficulty to keep the
fastest learners interested. Finally, writing code that looks like
real programming generates a feeling of satisfaction in the
student.

IV. AliveScript Language

 AliveScript is a new programming language specifically
designed to be used in our code-based interface. It makes the
bridge between block-based programming and true programming
to allow a progressive and simple learning of key concepts in this
field, like variables, conditions, and loops. Therefore, this
programming language has been made to be as easy as possible
for high-school students.

A. Core Features of AliveScript
 The main difference between AliveScript and the other
programming languages is the presence of built-in methods to
move the physical vehicle as well as the simulated vehicle. These
methods work the same way as the engine blocks in the block
interface, but can also work with all features included in
AliveScript, as they are part of the language.

B. Similarities to Other Programming Languages
 AliveScript has many similarities to other programming
languages, which allow the student to make a comprehensive
transition between block-based programming and real
programming. Because of the potential complexity of variable
types (integers, floats, strings) we decided to make it dynamically
typed, so the students do not have to worry about type declaration.
The elementary mathematical operations are the same as many
other languages, as they are already understandable for most
people, even at a young age. It is also possible to code loops,

functions, and conditional statements. On the other hand, loops,
conditional blocks and functions have a similarity which is their
ending. The keyword “fin” (end) followed by the name of the
code block helps the student see which part of his code ends at a
specific place, leading to a better understanding of the general
programming syntax. The user can also comment his code by
inserting a sharp symbol (#) before the commenting line.

Fig. 5 Example of a loop in a function in AliveScript

 We made AliveScript in a way that loops and functions can be
used in the most intuitive manner by a beginner user, but not far
from common programming languages. For instance, a lot like
Python, it is possible to loop through all the letters of a string
variable (named “texte” (text) in AliveScript) as well as through
elements of a list (see Fig. 5 above). The use of functions has also
similar features from Python such as the option to give or not a
type and a default value to a parameter of a custom function.
Those features have been chosen while keeping in mind that
students need an easy programming language where the code is
simple and easy to read.

Fig. 6 Example of error reports in an AliveScript code

 AliveScript can also find and report errors in a program, as
shown in the Fig. 6 below. If the code made by the user with
AliveScript has syntax errors in it, the application will highlight
where the error is in red, so the user is aware of the problem. If an
error occurs while compiling or executing the code, a message
will be displayed in the application’s console where the user can
know at which line has occurred the error and what exactly is the
problem of that line. This allows the user to understand his
mistakes and correct them easily.

C. Built-in Methods

Table. 1. Examples of built-in methods in AliveScript

Built-in method Description

Math.sin(angle) Returns the sinus of an angle, in degrees

Math.PI Returns the constant �

entier(string) Returns a string converted to integer if
possible

tailleDe(string|list) Returns the length of a string or a list

info(variable) Returns info concerning the variable (type,
value, etc.)

 Finally, we added several built-in methods that can be easily used
by students. They are additional tools to help the user create more
complex programs in the AliveScript language. Table. 1 displays
some of the methods already implemented in the AliveScript
language. Note that this list will continue to grow to give students
more useful tools to let them go further in programming.

V. Connected Physical Vehicle and Built-in

Simulation

 To enhance the interest of young students into the programming
field, we thought that showing them the result of their code in an
amusing manner would be the best solution. It is in this state of
mind that we tried to adapt the vehicle from the ALIVE project to
suit the needs of students from elementary schools to high
schools.

A. The Physical Vehicle

Fig. 7 ALIVE physical car

 The ALIVE pedagogic project has been made to be compatible
with the physical vehicle from the ALIVE research project, as
shown in Fig. 7. The purpose of this car in our application is to
execute the commands that will make it move towards a direction,
given by the AliveScript program or the block-based program.
This connection is made by a Bluetooth connection between the
Bluetooth module of the car and the machine where the
application is running. When the application executes the code
written by the student, it sends a specific value every time it passes
on one of the five vehicle methods, which makes the car execute
the action ordered by the method. While running a code in the
pedagogic ALIVE application, the vehicle simply listens to
incoming values and reacts according to them until the end of the
code.
 This new way to learn programming can become very attractive
and amusing for young students. In fact, having a vehicle that can
react in accordance with the code they created by themselves
could improve the students understanding of basic programming
knowledge while they try to achieve the multiple challenges.
Furthermore, the game-like aspect of the application could create
enjoyment for students and encourage them to upgrade their code
with the tools given by the application. In a time when
programming is all around us, which makes the demand increase
significantly and when this field can stay blurry and mysterious
for a high school student, the education program should have the
best tools to make our young but brilliant generation discover the
world of programming and his infinite possibilities.

B. The Simulation
 The pedagogic ALIVE project also has a built-in simulation. It
becomes an alternative to the physical vehicle when the user does
not own one and can be an additional visualisation of the vehicle
responding to the code when the physical car is responding to it
at the same time, as shown in Fig. 8.

Fig. 8. ALIVE car responding to a program while the simulation
is running

 In its basic state, the simulation represents a classic four-ways
intersection, with four two-ways roads that seem to continue
beyond the window. As we can see in Fig. 9, in this setup, we
have placed the representation of the car at the center of the
intersection.

Fig. 9. Initial and moving setup of the simulation

 When the user runs the application, the simulation follows the
same vehicle methods in the code as the physical car. In the
current version, the car cannot get out of the road as the simulated
world adapts itself with the car’s movements. This solution has
been kept because its first objective is to be another visual support
to see the progression of the car, along with the physical ALIVE
car. This way, students can enjoy the application without owning
the real vehicle.

C. The Results
 To put our application to test, we have asked young students,
who were complete beginners in programming, to use our project
in order to make the physical vehicle and the simulated vehicle do
specific movements. Because of the actual pandemic, we did not
have the possibility to try ALIVE PLAY on a large group of
students, but those who have tested it gave us a good idea of the
potential success of our application.
 We gave to a couple of elementary and high school students the
task to make the physical vehicle move in specific ways. As
shown in the Fig. 10, there were three different scenarios with
distinct difficulties. We asked the students to do the tasks from
the easiest, in green, to the hardest, in red, and we noted if they
succeeded in the task or not, as well as their satisfaction regarding
their accomplishment and the time required.

Fig. 10. The scenarios given to students

 As we can see in Table 2, elementary school students have
succeeded in all scenarios, except the third.

Table. 2. Statistics about scenarios on elementary and high
school students (AliveScript interface)

Task Difficulty Education
level

Success User
Satisfaction

Time
required

Scenario 1 Easy Elementary Yes High 30 s

High school Yes High 15 s

Scenario 2 Medium Elementary Yes High 1 min

High school Yes High 1 min

Scenario 3 Hard Elementary No High +10 min

High school Yes High 3 min

In fact, this last scenario contained loops, making it the hardest. It
is therefore understandable that young students have encountered
difficulties while trying to do this task. However, the students
have manifested interest in doing more challenges. They enjoyed
the experience and were amazed by the movement of the physical
car. On the other hand, high school students have succeeded in all
tasks, which demonstrates the effectiveness of our method. These
older students can then try out more complex scenarios, which
will allow them to learn more about programming.

VI. Software Upgrade Possibilities

 We are aware that many upgrades can be made to make the
project even more interesting for schools. As mentioned earlier in
this paper, we are working on other features that will make the
user learn the basics of programming and artificial intelligence
while he can experiment the theory immediately by using the
built-in interface of ALIVE PLAY. We will keep the possibility
to choose between the block-based interface and the AliveScript
interface, so the user can choose the one that better suits their
needs. In addition, we will add a “sandbox” mode where the user
can experiment with any of the two interfaces or both at the same
time, and modify the simulation by adding obstacles in the
simulated car’s environment.
 Finally, it could be very useful to add the possibility to use the
vehicle’s sensors. The ALIVE car is equipped with ultrasound
sensors, which allow it to calculate the distance of the nearest
obstacle in front of it. The use of these sensors in our application
permits movements based on distances instead of time, offering a
new way to command the car.

VII. Conclusion
 To conclude, the ALIVE PLAY project proposed a new
programming learning approach, which we compared to some
other similar platforms. We proved that our project had better

chances to reach the interest of youth by providing interfaces that
can raise their attraction to programming. In addition, we are the
only project that we found letting the user control a physical car
by writing a simplified program in an accessible language. We
aim to try out our project in local schools to see if the platform
arouses the interest of teachers and students. However, we have
explained possible improvements on the application to further
develop the software and its functionalities, such as providing a
less limited simulation to increase its functionalities.

ACKNOWLEDGMENT

 We would like to thank Enric Soldevila, Mathis Laroche,
Gabriel Landry and Éloi Vincent-Légaré, members of LRIMa for
their valuable help in coding this application. This project would
have never been as important as it is without their ideas and talent.

References

[1] F. Jobin, S. Beaulieu, G. Landry, Z. Ardekani-Djoneidi, É.
Vincent-Légaré, M. Laroche and J. Rezgui on gitlab,
https://gitlab.com/sim.beaulieu10/ alivepedagogique [last visited
April 13th, 2021].
[2] J. Rezgui, É. Gagné and G. Blain “Autonomous Learning
Intelligent Vehicles Engineering (ALIVE 1.0)”, IEEE ISNCC
2020.
[3] J. Rezgui, É. Gagné, G. Blain, O. St-Pierre, M. Harvey and S.
Charkaoui, “Open Source Platform for Extended Perception
Using Communications and Machine Learning on a Small-Scale
Vehicular Testbed”, IEEE GIIS 2020.
[4] J. Rezgui, É. Gagné, G. Blain and O. St-Pierre, M. Harvey,
“Platooning of Autonomous Vehicles with Artificial Intelligence
V2I Communications and Navigation Algorithm”, IEEE GIIS
2020.
[5] the Lifelong Kindergarten Group at the MIT Media Lab.
https://scratch.mit.edu/ [last visited April 13th, 2021].
[6] Codecademy.
https://www.codecademy.com/courses/welcome-to-
codecademy/lessons/ [last visited April 13th, 2021]
[7] freeCodeCamp. Basic HTML and HTML5. Say Hello to
HTML elements. https://www.freecodecamp.org/learn/
responsive-web-design/basic-html-and-html5/say-hello-to-html-
elements.
[8] W3Schools. HTML Tutorial.
https://www.w3schools.com/html/default.asp
[9] Pluralsight. Core Python: Getting Started..
https://www.pluralsight.com/courses/getting-started-python-core
[10] One Month. Learn Python. https://onemonth.com/
courses/python [last visited April 13th, 2021].
[11] Udemy. Learn Python Programming Masterclass.
https://www.udemy.com/course/python-the-complete-python-
developer-course/ [last visited April 13th, 2021].
[12] Code.org. Leçon 4: Programming with Angry Birds.
https://studio.code.org/s/courseb-2020/stage/4/puzzle/2 [last
visited April 13th, 2021].

