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A B S T R A C T

Recently, cooperative Unmanned Aerial Vehicles (UAVs) have been used in several complex
military and civilian applications. Mobile Target Search (MTS) and Mobile Target Tracking
(MTT) are among the UAV-based applications that require the involvement of cooperative
UAVs. Accordingly, this paper proposes a cooperative UAVs framework for MTS and MTT
named (CF-UAVs-MTST). CF-UAVs-MTST is based on the GzUAV co-simulator. It provides a
MTS mechanism to generate the aerial waypoints for the UAVs. The MTS algorithm considers
the flight speed and altitude, and the resolution of the on-board camera. The MTS algorithm
ensures an efficient coverage rate which is in the order of 96.2%. When performing the MTS
task, an algorithm runs to detect the target based on a cascade classifier. Further, we provide an
MTT mechanism to estimate the target motion and design the optimal tracking path. Simulation
results show that CF-UAVs-MTST allows a fast and high precision tracking.

. Introduction

.1. Context

Recently, Unmanned Aerial Vehicles (UAVs) [1] have enabled numerous applications thanks to their flexibility, ability to perform
omplex missions, and low maintenance costs. UAVs have demonstrated their utility and efficiency for Mobile Target Tracking
MTT) [2,3], convoy protection [4], etc.

Mono-UAV-based systems or multi-UAV-based systems can be used for such applications. For mono-UAV-based systems, only
AV-to-Ground (U2G) and Ground-to-UAV (G2U) communications are considered. Thus, the communication between UAVs can
nly be done through the ground node. Therefore, the performance of a mono-UAV-based system is limited compared to a multi-
AV-based system and especially cooperative UAVs. Cooperative UAVs and swarm UAVs can cover larger areas and perform well

n hazardous and harsh environments where conventional equipment or humans cannot stay. Compared to mono-UAVs systems,
ooperative and swarm UAVs have a higher success rate compared to mono-UAVs and can quickly accomplish the required task and
ission, especially when 3D swarm mobility is exploited. In this work, we use cooperative UAVs for both Mobile Target Search (MTS)

nd MTT. However, such multi-UAV-based systems require additional algorithms to ensure coordination and self-organization and
void collisions. Therefore, flight planning is a primary task. The flight plans should be followed by the UAVs without a controlling
uthority to achieve their common goal. The flight plans are highly dependent on the nature of the task and policies.
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1.2. Problem statement

In general, algorithms are designed to activate physical systems. Setting their parameters incorrectly can have disastrous
onsequences, such as a crash or injury to people. Therefore, before running these algorithms on a real system, they must be properly
erified. For example, in the MTS and MTT applications, the biggest challenge is to operate three mechanisms simultaneously
UAVs, flight control, and inter-UAV communication). The UAV simulators such as Gazebo [5] can realistically represent the physical
ynamics of UAVs, but the communication between UAVs, which is absolutely necessary for cooperative target search and tracking,
ay not work well. Network simulators such as the Network Simulator NS-3 [6] can address the problems of packet loss, collisions,

r latency. However, this type of simulator cannot support the physical dynamics of UAVs, which is very important for defining
aths for MTS and MTT. The above simulator categories do not work together in an integrated way. The research community is
orking diligently to develop a realistic co-simulation environment that integrates more than one type of simulator.

Although many target detection methods (e.g. deep learning, context-aware classifiers, cascade classifiers) tend to perform MTS,
here are still some challenges due to the instability of the image, small size of the target, and fast platform motion. In addition,
AV trajectory planning is an important module for MTS. A flight path must be found that allows the UAV camera to fully cover
egion of Interest (RoI). For large RoI coverage, we can use more than one UAV, divide the RoI into some sub-RoIs and assign a
AV to each sub-RoI. Energy is the major constraint for the small UAVs, so the RoI size should match this constraint to fully cover

he RoI. Then the selected pattern is applied to each sub-RoI to obtain sub-paths.
Reliability and accuracy of MTT based on cooperative UAVs are challenging tasks because multiple modules are needed to be

ntegrated, including target motion estimation, UAV tracking path generation, coordination and communication between UAVs, etc.
nergy is the major constraint for small UAVs, so it is necessary to generate an appropriate tracking path for UAVs. Moreover, systems
ith multiple UAVs require additional algorithms to ensure cooperative MTT. Coordination can occur in centralized, decentralized,
r distributed architectures.

.3. Contributions & paper organization

We study a variety of co-simulators and evaluate their strategy of interconnection and synchronization of integrated simulators.
fter reviewing the existing solutions, we select the most appropriate co-simulator that provides a realistic environment for
imulating MTS and MTT missions. We propose a cooperative UAVs framework for MTS and MTT named (CF-UAVs-MTST) which
ses the co-simulator GzUAV [7]. CF-UAVs-MTST provides a realistic simulation for cooperative UAVs-based systems. It guarantees
eal-time availability and reliability by integrating three categories of simulators and ensures synchronization between them. Thus,
he contributions of this paper are diverse and can be summarized in the following points:

• We propose a cooperative UAVs framework for simulating MTS and MTT algorithms and approaches. CF-UAVs-MTST simulates
the UAV software and hardware structure, including the 3D visualization engine Gazebo, the flight controller ArduCopter [8],
and the NS-3 [6].

• We provide a MTS mechanism for cooperative UAVs that consists of two mechanisms: (i) a path generation process to generate
the ideal ground path and the aerial waypoints for the UAVs and (ii) a mobile target detection process based on a cascade
classifier.

• We provide an MTT mechanism for cooperative UAVs that consists of three mechanisms: (i) a target motion estimation process
based on the Kalman Filter (KF), (ii) a path planning process to track the target based on its motion estimate, and (iii) a
cooperative MTT process that can be invoked by the UAV that has already detected a target.

• We validate the functionalities and analyze the developed framework.

he remainder of this article is organized as follows. Section 2 identifies related work. Section 3 addresses the main concepts
f CF-UAVs-MTST. Section 4 provides a cooperative UAVs for MTS mechanism. Section 5 presents a cooperative UAVs for MTT
echanism. Section 6 presents a theoretical analysis of the proposed framework. In Section 7, we explain the simulation environment
sed to validate the performance of CF-UAVs-MTST and present the evaluation results of the proposed framework. Finally, we draw
nsightful conclusions in Section 8.

.4. Abbreviations & Acronyms

All acronyms used in this document can be found at Table 1.

. Related work

.1. Co-simulators for UAVs-based systems

UAV-based system simulations can be implemented using a wide range of tools that can be approximate or highly accurate to
imulate UAVs running the same real-world program, receiving the same input, and producing the same output. A realistic simulation
nvironment for cooperative UAVs requires the integration of several simulators into a global simulation, called co-simulation. In the
ollowing, we examine co-simulators that have been proposed for the simulation of multi-UAV-based systems. We classified them into
2

wo categories based on the consideration of the communication aspects of UAVs. Based on a comparative study of these tools, we
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Table 1
Acronyms.

AoG Angle of Gimbal AoV Angle of View
API Application Programming Interfaces FANET Flying Ad hoc NETwork
FCU Flight Control Unit GCS Ground Control Station
GDX Ground Distance in the plan X GDY Ground Distance in the plan Y
G2G Ground-to-Ground G2U Ground-to-UAV
KF Kalman Filter MTS Mobile Target Search
MTT Mobile Target Tracking PC Personal Computer
RoI Region of Interest ROS Robot Operating System
SITL Software-In-The-Loop UAV Unmanned Aerial Vehicle
U2G UAV-to-Ground U2U UAV-to-UAV
VNF Virtual Network Function ZMQ Zero Message Queue

select the best tool that provides realistic simulation for cooperative UAVs-based systems. Researchers at [9] have integrated XPlane
and OMNeT++ into a co-simulator called AVENS. Communication between the two simulators is done using XML documents. For
this reason, bidirectional transmission of telemetry, control data, and sensors is complicated. In addition, AVENS does not consider
time synchronization.

The authors of [10] have proposed an integrated simulator based on ArduCopter and NS-3 called FlyNetSim. It includes a
iddleware layer to connect the two simulators, enabling synchronization to create end-to-end data paths based on the publish–

ubscribe Zero Message Queue (ZMQ) protocol. The main drawback of FlyNetSim is its lack of accuracy when many events occur
n a short period of time.

In [11], the authors have proposed the CUSCUS co-simulator that integrates FL-AIR and NS-3. The communication between the
wo simulators is done through the tap bridges and the Linux containers. The data exchange based on Linux containers increases the
omputational costs. In [12], the researchers have proposed an integrated simulator called VENUE. It is based on Linux containers,
ightweight Virtual Network Functions (VNFs) and the NS-3 simulator. It enables VNFs to respond with UAV equipment. It covers
he simulation phase to the integration phase of real equipment. However, VENUE does not consider mobility model developments.

In [7] the researchers integrated three tools, namely Gazebo, ArduCopter and NS-3 into a realistic co-simulator called GzUAV.
hey proposed a software module called GzUavChannel to allow the simulators to work with a common time concept. They also
sed the Application Programming Interfaces (APIs) to exchange data and support distributed simulation.

The researchers of [13], like FlyNetSim [10], used the ZMQ protocol to configure one-to-one correspondence between nodes
n NS-3 and UAVs in Gazebo. The proposed co-simulator, named CORNET, creates a continuous data path between UAVs and
etween UAVs and the Ground Control Station (GCS), with position and time synchronization at both ends. CORNET suffers from
he same drawback as FlyNetSim, namely the lack of accuracy for many events in a short time. Based on a deep study on multi-UAV
o-simulators, we choose GzUAV for the development of our CF-UAVs-MTST because of its realistic simulation. Moreover, GzUAV
uarantees real-time availability and reliability and ensures synchronization between the integrated tools thanks to the use of APIs.
zUAV is extended to support robust algorithms for MTS and MTT.

.2. Related work of MTS algorithms

The cooperative MTS algorithm consists of finding drone flight paths that cover each point of RoI. The MTS performance depends
n the RoI coverage rate. MTS approaches are divided into two categories, including exact cellular decomposition and approximate
ellular decomposition [14]. The size of the cells is proportional to the footprint of the camera in the UAV. Several characteristics
hould be considered when choosing a flight pattern, including route length, number of turns, turn angles, and optimal speeds
o minimize UAV energy consumption. Three categories of flight patterns are distinguished in the literature: Random, Spiral, and
awnmower flight patterns.

• The random flight pattern: The authors of [15] chose the exploration strategy random walk. Despite the use of a mechanism
to avoid revisiting areas, the full coverage of RoI is not guaranteed.

• The spiral flight pattern: It consists of straight lines and 90-degree turns to the left or right. This flight pattern starts from
the center of RoI and extends to the borders. The spiral flight pattern is exploited in [16]. In this exploration strategy, a
larger number of turning maneuvers are performed, which requires more time and higher energy consumption of the drone.
In addition, the 90-degree turn angle adopted by the spiral flight pattern is not suitable for UAV path planning because UAVs
are constrained by their turning radius.

• The Lawnmower flight pattern: It consists of repeated outbound and return flight lines. This flight pattern is a simple
geometric flight pattern and is adopted by the most common flight control software (e.g. Mission Planner). This flight
pattern has recently been used in [17]. Compared to the spiral flight pattern, the Lawnmower flight pattern reduces energy
consumption by minimizing the number of turns, thus reducing the time of exploration. We adopt this flight pattern in the
proposed CF-UAVs-MTST framework.
3
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2.3. Related work of MTT algorithms

In this section, we briefly present previous work on MTT algorithms based on computer vision. The authors of [18] proposed a
AV-based system to track an unmanned ground vehicle. The target detection algorithm uses an improved context-aware correlation

ilter to reduce the influence of occlusion, target deformation, and light changes. The proposed algorithm used only the gradient
istogram feature. Adding other features such as depth can improve the performance of the tracking task. In addition, the researchers
f [19] have proposed a UAV-based system for tracking multiple targets and collecting data. UAVs must collect data from critical
reas and transmit it to a central location. An intelligent matching algorithm between UAVs and targets is performed. Optimal
ata collection is determined in a distributed manner using a game theoretic approach. The authors of [20] have proposed a
eep Learning-based method for detecting and tracking a high-speed vehicle. The target detection module relies on a stereo image
rocessing algorithm to detect the target and calculate its location. The target position is transmitted to the UAV controller to
rack the vehicle. Although the use of a Robot Operating System (ROS) to transmit the captured image to a separate computer
or processing is required, the framework requires higher computing power and specialized hardware. In addition, the authors
f [21] proposed a hierarchical deep learning task distribution framework. The outsourcing optimization algorithm was performed
o minimize the overall weighted costs such as energy consumption and tracking delay, taking into account the quality of the video
mages. Although the proposed algorithm provided efficient offloading, it did not guarantee high inference accuracy.

. CF-UAVs-MTST design & architecture

.1. Integrated tools

The proposed CF-UAVs-MTST framework is based on the integration of three tools: Gazebo, NS3, and ArduCopter. UAVs are
imulated using Gazebo; the network and communication are simulated using the network simulator NS-3 and the flight stack is
xecuted using the ArduCopter tool. Below is a brief description of each tool.

• Gazebo: It provides realistic simulations for the UAVs and their sensors. It can simulate a large number of UAVs (their
models can be defined via an XML file that specifies the geometry and dynamics of the UAV modules, the UAVs’ handling
characteristics, and the sensors to be used). Gazebo has a modular software architecture that can be extended by plugins.
Plugins can interact with Gazebo’s APIs as well as with external processes.

• ArduCopter: It provides control mechanisms for UAVs. It runs on the FCU, supports connection to a companion computer,
has real-time UAV status, and sends velocity and position setpoints. The connection between the companion computer and
the FCU can be established using the MAVLink protocol. MAVLink can be used to remotely control the UAV from a GCS via
wireless telemetry radios and to send emergency commands and monitor status.

• NS-3: It is capable of simulating different types of network protocols and infrastructures. It provides models for different
technologies and protocols. The simulations are programmed using simulation scripts.

• Discussion: The tools presented above form the basic components for creating a simulation for cooperative UAVs. However,
they cannot work in an integrated manner. CF-UAVs-MTST has to solve two main problems. The first problem is related to
data exchange. The previously presented tools have different interfaces, so a suitable ‘‘translator’’ must be created. The second
problem is related to the synchronization of the clock. The tools presented above should provide a realistic simulation, but
each of them has a different notion of time. The integrated simulation environment CF-UAVs-MTST must have a common
notion of time. Therefore, another ‘‘translator’’ must interact with each tool to make them work with a synchronized way.

.2. CF-UAVs-MTST: System design

The architecture of CF-UAVs-MTST consists of several modules related to a specific UAV component in the real scenario. The
oftware modules are the Gazebo visual model, the Gazebo physical model, the CF-plugin, the ArduCopter process, the UAV node,
nd the mission layer. The Gazebo visual model and the Gazebo physical model define the frame and inertia of the UAV. These
odels are encoded via the same XML file used by Gazebo to simulate the physics of the UAV and represent it in the 3D scenario.
he frame must be connected to the UAV flight stack. ArduCopter needs to get the information about the position of the frame
Euler angle and Euler angle rates, geographic coordinates, etc.) and send the correct commands to the motors. The CF-Plugin is
erived from the ArduCopter plugin available in Gazebo. It has been modified to include synchronization of activities with the other
omponents of the integrated simulation environment.

The ArduCopter process is compiled to run on Personal Computer (PC) platforms (not a real FCU) and supports SITL mode. It
an monitor the flight of the simulated UAV by interacting with the CF-Plugin.

The UAV node represents the wireless interface of the companion computer. Its instance runs in the NS-3 process to simulate
he wireless communication channel. CF-UAVs-MTST supports both IEEE 802.15.4 and IEEE 802.11 wireless standards, which can
e selected when the simulation is started.

The mission layer is the module that runs on top of the user software and implements the cooperative UAVs for both MTS and
TT. It is a Python script that uses the services of two Python APIs: DroneKit and NS3interface. It contains the behavior of a single
4

rone at the mission level, therefore each UAV has its own Python process.
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Fig. 1. Relationships between the CF-Channel and the components [7].

Fig. 1 presents the relationship between the software components of the CF-UAVs-MTST and CF-Channel. Communication
between ArduCopter and the mission level instances is done via a TCP connection used through DroneKit to encapsulate the MAVLink
protocol. The transmission of data packets across the UAV networks is also done using a TCP connection. The use of TCP connections
allows the distribution of the different components to different computers.

3.3. Time synchronization

The dynamical systems handle time based on the specific nature of the system. The physical systems simulated by Gazebo are
modeled based on differential equations to control dynamics and kinematics. At each iteration, the sampling time corresponds to
a time interval used to update the state information. Such simulation policy is called time-controlled. Moreover, the ArduCopter
flight controller implements the control algorithms based on differential equations. Thus, it is a time-driven process.

The simulated network systems do not support continuous timing, but they are characterized by sporadic events, e.g. the UAV
is silent until it has packets to send. Such simulation policy is referred to as event-driven. Events are retrieved and processed by
an appropriate scheduler. In addition, events can have a timestamp indicating when the event needs to be processed. As we can
see, CF-UAVs-MTST has to consider tools with different simulation strategies: event-driven for NS-3 and time-driven for Gazebo and
ArduCopter.

In the CF-UAVs-MTST simulation environment, the sampling period is generated by Gazebo. When an event occurs, all plugins
of Gazebo are notified, including CF-Plugins. When CF-Plugin is notified, it retrieves the appropriate data from the associated UAV
sensors and sends it to CF-Channel. This message informs CF-Channel about the beginning of a new simulation period. The simulation
period is divided into two different phases. In the first phase, the UAV related activities are executed and in the second phase, NS-3
performs the network simulation.

The division of the simulation period into two different phases allows the synchronization of the transmission activities. Namely,
in the first phase the mission algorithm can be executed (like MTS, MTT algorithms). This phase must include (i) the calculation of
the next speed or position of the UAVs and their transmission to ArduCopter through the MAVLink protocol (ii) the transmission
of messages to be simulated by NS-3. In the second phase, NS-3 starts simulating the data transmission. When it is necessary to
transmit a data packet to a target UAV, NS-3 contacts the corresponding UAV node.

4. Cooperative UAVs for MTS

Compared to MTS based on ground vehicles, MTS based on air vehicles, presents several challenges. For example, a ground
vehicle can make 90-degree turns to rotate in place, while UAVs are constrained by their turning radius. In addition, energy
efficiency is an important challenge for aerial MTS. The size of the RoI depends on various factors, such as the UAV’s flight duration,
maximum flight time, flight speed, acquisition width, energy required, fuel consumed to reach the starting point for sweeping an
RoI, etc. Therefore, the path generation process should take into account the capabilities of the UAVs, their characteristics such as
fuel consumption, and flight speed, etc.

In this paper, we consider a team of 𝑛 UAVs, 𝑈𝐴𝑉 𝑠 = {𝑈𝐴𝑉1, 𝑈𝐴𝑉2, .., 𝑈𝐴𝑉𝑛}. It is assumed that there is only one target in
a wide RoI. RoI is decomposed into 𝑛 sub-RoI, 𝑅𝑜𝐼 = {𝑅𝑜𝐼1, 𝑅𝑜𝐼2, .., 𝑅𝑜𝐼𝑛}. Let RoIi be associated with Ui. It is assumed that the
sub-RoIs are equals.

Each UAV is equipped with a sensor camera and must provide full coverage of its sub-RoI with low power consumption. Therefore,
the projection of the UAV camera on the ground, called the camera-ground footprint distance, is important to generate the ideal
ground path and thus the aerial waypoints for the UAVs.

Area decomposition and path generation are performed by the GCS in a centralized manner to reduce computational overhead.
The GCS knows the capabilities and characteristics of the drone such as fuel consumption, maximum flight speed, camera resolution,
etc. Based on this information, the GCS calculates the appropriate ground path and converts it into aerial waypoints.
5
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Fig. 2. Ground distance in the plan X.

4.1. Camera ground footprint distance

The ground footprint distance of the UAV camera depends on several factors, including flight altitude 𝑎𝑙𝑡, focal length 𝑓𝑜𝑐𝑎𝑙𝑙𝑒𝑛,
camera resolution (𝑤𝑖𝑑𝑡ℎ ∗ ℎ𝑒𝑖𝑔ℎ𝑡), and the Angle of Gimbal (𝐴𝑜𝐺).

The Ground Distance in plane X (𝐺𝐷𝑋) and the Ground Distance in plane Y (𝐺𝐷𝑌 ) are calculated with the formulas (1) and (2),
respectively.

𝐺𝐷𝑋 = 𝑎𝑙𝑡 ∗ (𝑡𝑎𝑛(𝐴𝑜𝐺 + 0.5 ∗ 𝑋_𝐴𝑜𝑉 ))−

𝑎𝑙𝑡 ∗ (𝑡𝑎𝑛(𝐴𝑜𝐺 − 0.5 ∗ 𝑋_𝐴𝑜𝑉 ))
(1)

𝐺𝐷𝑌 = 𝑎𝑙𝑡 ∗ (𝑡𝑎𝑛(𝐴𝑜𝐺 + 0.5 ∗ 𝑌 _𝐴𝑜𝑉 ))−

𝑎𝑙𝑡 ∗ (𝑡𝑎𝑛(𝐴𝑜𝐺 − 0.5 ∗ 𝑌 _𝐴𝑜𝑉 ))
(2)

where 𝑋_𝐴𝑜𝑉 and 𝑌 _𝐴𝑜𝑉 are the Angles of View (AoV) representing the visible part of the space through the camera. The AoV
depends on the camera characteristics, namely the width (mm), the height (mm), and the 𝑓𝑜𝑐𝑎𝑙𝑙𝑒𝑛(mm).

The 𝑋_𝐴𝑜𝑉 and 𝑌 _𝐴𝑜𝑉 are calculated with the formulas (3) and (4), respectively.

𝑋_𝐴𝑜𝑉 = 2 ∗ 𝑎𝑡𝑎𝑛(𝑤𝑖𝑑𝑡ℎ∕(2 ∗ 𝑓𝑜𝑐𝑎𝑙𝑙𝑒𝑛)) (3)

𝑌 _𝐴𝑜𝑉 = 2 ∗ 𝑎𝑡𝑎𝑛(ℎ𝑒𝑖𝑔ℎ𝑡∕(2 ∗ 𝑓𝑜𝑐𝑎𝑙𝑙𝑒𝑛)) (4)

Fig. 2 illustrates the method to calculate GDX.

4.2. Path generation process

The path generation process consists of generating the ideal ground path and the aerial waypoints for the UAVs. It is a primary
mechanism that depends on the distance of the camera from the ground. Any location on the ground should be captured with one
pass of the UAV camera. Therefore, it is necessary to establish the ideal ground path of the camera’s center of gravity. Then, the
resulting ground path is converted into aerial waypoints that the UAVs will follow.

• Generating the Ground Path
The ground path is the path of the camera footprint in the RoI. We chose to use the lawnmower pattern, which is a repetitive
back-and-forth configuration based on the camera’s ground distance (GDX and GDY). The ground path allows to capture any
location on the ground in one pass. Fig. 3 presents a typical lawnmower pattern based on the perimeter pattern of RoI. In
Fig. 3, the red path provides full coverage of the area, but it lets UAV fly beyond the perimeter of the RoI, so the green path is
the correct pattern. Note that a path with many turns requires more time and more energy than a path with few turns. Fig. 4
shows the two possible paths for an RoI. It is necessary to generate a path that minimizes the number of turns of the UAV to
accomplish the task MTS.

• Waypoints Transformation
After the ground pattern is created for each UAV, the waypoint transformation is performed. The request to reach a specific
waypoint is made through DroneKit. The UAV must follow the generated waypoints to the desired ground point while
maintaining the camera footprint. Due to minimum turning radius specifications, the flight path may be outside the sector
assigned to the UAV. A final check should ensure that all waypoints are within the allowed flight envelope.
6
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Fig. 3. Two possible lawnmower pattern paths.

Fig. 4. Two possible paths for an RoI.

Based on the list of generated waypoints, each UAV performs the MTS task in its RoI. While performing this task, an algorithm runs
to detect the target.

4.3. Mobile target detection

For target detection, we adopted the famous approach of [22], which combines AdaBoost with a cascade process. This allows
extremely fast recognition rates to be achieved. To compute the Haar features quickly, integral image representation for images is
introduced. The features are used as weak learners, and AdaBoost is used to weight these learners. The cascade classifier is used
to discard multiple regions of the image background and focus the computations on the target regions. The cascade function uses
a variety of .xml files with different feature sets. In our case, we use the haarcascade_fullbody.xml and haarcascade_pedestrian.xml
files to identify the features of the pedestrian’s body with multiscale detection.

Implementing the target detection algorithm in the context of CF-UAVs-MTST framework requires performing several steps. The
first step is the insertion the target into the Gazebo 3D visualization interface. Gazebo allows the inclusion of a variety of other
objects in the simulated environment. In Gazebo, an animated model is referred to as an actor that does not interact with the rest
of the simulation. We added a skeleton animation that moves randomly at different speeds. Assuming that the target is intelligent,
when it notices UAV pursuit, it performs evasive maneuvers, such as increasing its speed to avoid tracking.

The second step is to include the target detection module at the mission level. We used the CascadeClassifier function from the
OpenCV library to detect the pedestrian’s body on the captured image.

4.4. Multi-UAVs for MTS

The proposed CF-UAVs-MTST framework uses the IEEE 802.11 wireless standard for the created FANET that is simulated by NS-
3. The NS-3 interface contains functions for sending and receiving packets. For the encapsulation/decapsulation processes, which
consist of packing/unpacking data packets during network communication, we used Python’s 𝑠𝑡𝑟𝑢𝑐𝑡 library. It can handle the binary
data of the network. The FANET consists of a GCS and a number of UAVs. Initially, each FANET node has a MAVLink identifier.
This identifier is used when MAVLink messages are transmitted. Among the first packets sent from the GCS to each UAV Ui are
the packets containing the coordinates of the starting point, air waypoints, altitude, airspeed, and AoG. The received waypoints
are converted into commands to be executed by the UAV. It should be noted that the UAV firstly flies in ‘‘GUIDED’’ mode (e.g. to
perform the turn) and then switches to ‘‘AUTO’’ mode to receive the commands.

5. Cooperative UAVs for MTT

Once the target is detected, it is necessary to predict the next target position (after a short time). This information is important
to change the trajectory of the UAV to track this target.

5.1. Target motion estimation

The KF [23] is used to estimate the next target position. KF is a recursive algorithm for a linear filtering problem with discrete
data. KF has been used extensively in research, especially in the field of assisted or autonomous navigation. KF is essentially a set of
mathematical formulas for a predictor–corrector estimator that minimizes the estimated error covariance. KF consists of two steps,
namely the prediction step and the update step. In the prediction step, the next state of the system is predicted based on the previous
measurements. In the update step, the current state of the system is estimated based on the measurements in that time step.
7
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5.2. Path planning

Based on the target’s motion prediction, the UAV should change its path while maintaining a certain distance from the target. The
arget should be in the center of the camera image. To enable automatic sequencing and timing, there are soft transitions between
aypoints based on the estimation of the target speed. The list of waypoints to be reached in a sequence is generated by the mission
odule based on the estimated target speed. The request to reach a specific waypoint is executed via DroneKit.

.3. Cooperative UAVs for MTT

To improve the MTT success rate, the MTT task is performed cooperatively. Once the target is detected, the UAV should send this
nformation to the GCS while continuing to send its current waypoint to neighboring UAVs (which are within its communication
ange). The decision to request tracking assistance can be made in two critical cases.

• If the UAV cannot track the target for a period of 𝑃 , it sends a request for help to all neighbor UAVs.
• If the UAV’s fuel is insufficient to complete the MTT task, the UAV can select another UAV from the list of nearest UAVs to

complete the MTT task, or the GCS will activate another recovery UAV.

. Theoretical analysis & computational complexity

To explore the characteristics, benefits, and limitations of the proposed framework, a theoretical analysis is presented to provide
urther insight into building effective cooperative UAVs networks.

.1. Theoretical analysis

Limited energy and flight time are the main challenges for wide-area coverage by cooperative UAVs. Therefore, we need to adjust
ome parameters to overcome these challenges. We need to find an optimal distance to the ground while ensuring accurate coverage
f camera movements. Suppose the area size is 1000 ∗ 1000 m2 and 9 UAVs must be deployed to cover the entire area. As mentioned
arlier, the area coverage depends on the distance of the UAV camera from the ground. Based on the Eqs. (1), (2), (3) and (4), the
round coverage depends on several factors, including the flight altitude, focal length, camera resolution, and AoG. The proposed
F-UAVs-MTS framework uses a Iris quadcopter equipped with a CGO gimbal camera that has the following specifications: the focal

ength 𝑓𝑜𝑐𝑎𝑙𝑙𝑒𝑛 is equal to 91.28 mm and the camera resolution is (640 ∗ 480) pixels. The gimbal angle is fixed at 30 degrees.
The flight time 𝑇 is calculated with the formula (5).

𝑇 = 𝐿
𝑉

(5)

here 𝑉 is the flight speed and 𝐿 is the flight path length. The trajectory length 𝐿 is calculated using the formula (6).

𝐿 = 𝑚 ∗ 𝑆𝐿 + (𝑚 − 1) ∗ (𝑋𝑇𝐴 + 𝑌 𝑇𝐴) (6)

here

• 𝑚 (𝑚 is an integer ≥ 1) and 𝑆𝐿 are the number and length of straight lines, respectively.
• 𝑋𝑇𝐴 and 𝑌 𝑇𝐴 are the lengths of the turning arcs on the planes 𝑋 and 𝑌 , respectively.

he formula (7) defines the number 𝑚 of straight lines.

𝑚 =
𝑚𝑖𝑛(𝑅𝑜𝐼_𝑤𝑖𝑑𝑡ℎ,𝑅𝑜𝐼_ℎ𝑒𝑖𝑔ℎ𝑡)

𝐺𝐷𝑋
(7)

here 𝑅𝑜𝐼_𝑤𝑖𝑑𝑡ℎ and 𝑅𝑜𝐼_ℎ𝑒𝑖𝑔ℎ𝑡 are the width and height of the RoI, respectively.
If 𝑚𝑖𝑛(𝑅𝑜𝐼_𝑤𝑖𝑑𝑡ℎ, 𝑅𝑜𝐼_ℎ𝑒𝑖𝑔ℎ𝑡) 𝑚𝑜𝑑 𝐺𝐷𝑋 ≠ 0 then 𝑚 is increased by 1.
The formula (8) defines the length of straight lines.

𝑆𝐿 = 𝑚𝑎𝑥(𝑅𝑜𝐼_𝑤𝑖𝑑𝑡ℎ,𝑅𝑜𝐼_ℎ𝑒𝑖𝑔ℎ𝑡) − 2 ∗ 𝐺𝐷𝑌 (8)

Formulas (9) and (10) define the length of turning arcs 𝑋𝑇𝐴 and 𝑌 𝑇𝐴, respectively.

𝑋𝑇𝐴 = 𝐺𝐷𝑋 ∗ 𝜋∕2 (9)

𝑌 𝑇𝐴 = 𝐺𝐷𝑌 ∗ 𝜋∕2 (10)

The CF-UAVs-MTST framework uses the Iris quadcopter. This copter is constrained by the average flight time, which should be
between 10 and 15 min. The acceleration and the time needed to go from the starting point to sub-RoI and to return from sub-RoI
to the starting point must be taken into account when calculating the maximum flight time. For this reason, we have assumed a
maximum flight time of 10 min. Using a higher speed can solve the flight time problem, but the flight speed will affect the battery
life of the drone. In the CF-UAVs-MTST framework, we used a flight speed of 8 m/s, based on the study of the authors of [24], which
shows that the power consumption remains below 150 W up to 8 m/s, above which the power consumption increases rapidly.
8
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Fig. 5. Coverage period per the UAV speed.

Since high flight altitudes provide basic information for mapping, we used low flight altitudes to obtain more accurate
nformation and improve detection accuracy. However, as the flight altitude decreases, the ground footprint distance decreases.
he aforementioned challenges are studied in detail to select the optimal flight speed and altitude for accurate MTS and MTT. Fig. 5
hows the full coverage period per flight speed at different flight altitudes. As can be shown, by selecting the period of covering the
ub-RoI less than the maximum flight time (10 min) and the optimal flying speed 8 m/s, the optimal flying altitude is 10 m. Another
rominent metric to be considered is the average coverage rate, which is often used to evaluate MTS algorithms. It describes the
ercentage of RoI covered by the cooperative UAVs. According to the formulas (1) and (2), 𝐺𝐷𝑋 and 𝐺𝐷𝑌 are proportional to the

UAV altitude 𝑎𝑙𝑡. Moreover, according to the formulas (9) and (10), 𝐺𝐷𝑋 and 𝐺𝐷𝑌 are proportional to the turning arcs 𝑋𝑇𝐴 and
𝑌 𝑇𝐴, respectively. Therefore, 𝑋𝑇𝐴 and 𝑌 𝑇𝐴 are proportional to the UAV altitude 𝑎𝑙𝑡. However, larger turning arcs let the edge of
the RoI uncovered and may reduce the coverage rate, as shown in Fig. 6, which plots the coverage rate of RoI as a function of UAV
altitude. As can be shown, an increase in altitude leads to a decrease in coverage rate. Based on the previous theoretical analysis,
the altitude of flight is set at 10 m. At this altitude, the average coverage rate is 96.2% which presents an efficient coverage rate.

6.2. Computational complexity

To reduce the computational complexity of the MTS algorithm, the computation of the path of the UAVs is performed centrally
by the GCS. Thus, this complexity is independent of the number of UAVs. It is related to the rules executed by each UAV. In the
worst-case, the target detection is performed at the end of the MTS. In this case, the complexity of the MTS algorithm is (𝑚),

here 𝑚 is the number of straight lines of the lawnmower flight pattern. The limited camera FOV leads to greater complexity. This
omplexity can be reduced by using high-resolution cameras. The Haar feature-based cascade classifier is used for target detection.
or each image, an integral image is computed with a few operations. The computation of Haar features for the integral image
nables accurate target detection in constant time. The total complexity of the cascade classifier is (𝑤𝑖𝑑𝑡ℎ ∗ ℎ𝑒𝑖𝑔ℎ𝑡), where 𝑤𝑖𝑑𝑡ℎ
nd ℎ𝑒𝑖𝑔ℎ𝑡 are the image width and height, respectively. Therefore, the calculation of the integral image can drastically reduce
he calculation time. The entire complexity of the detection algorithm is (𝐼_𝑤𝑖𝑑𝑡ℎ ∗ 𝐼_ℎ𝑒𝑖𝑔ℎ𝑡) where I_width and I_height are the
ntegral image width and height, respectively.

KF is used for the estimation of the target state. Its complexity is (𝑏3), where 𝑏 is the number of system states. This complexity
s low compared to the complexity of a Particle Filter which uses a set of particles to estimate the distribution of a process. The
omplexity of the Particle Filter is (𝐵 ∗ 𝑏2), where 𝑏 is the number of particles. This number should be large enough for the particle
ilter to perform well.

The total complexity of the proposed framework is the sum of the complexities presented earlier, it is (𝑚 + 𝐼_𝑤𝑖𝑑𝑡ℎ ∗
_ℎ𝑒𝑖𝑔ℎ𝑡 + 𝑏3).

. Framework performance analysis

.1. Simulation parameters

Table 2 presents the simulation parameters.
9
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Fig. 6. Coverage rate per the UAV altitude.

Fig. 7. Typical path for a UAV Performing MTS.

Fig. 8. UAV camera capture when detecting the target.
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Table 2
Simulation parameters.

Parameters Value

UAV type Quad-rotor, Iris
UAVs number 9
Camera type CGO with Gimbal
Frame rate 30 f/s
Image format BGR
Image resolution 640 ∗ 480 pixels
UAV altitude 10 m
Flight speed 8 m/s
Area size 1000 ∗ 1000 m
Wireless standard IEEE 802.11 n
Carrier frequency 2.4 GHz
Maximum transmission range 250 m
Packet size 512 Bytes
Data rate 11 Mb/s

Fig. 9. Estimated, predicted, and measured paths of the target.

Fig. 10. Path of the UAV detecting the target.

7.2. Simulation results

During MTS, the path generation algorithm worked well for the simulations. It generated the ideal aerial waypoints for the UAVs.
Fig. 7 shows a typical path for a UAV performing MTS. UAVs aim to detect targets that roughly resemble the human skeleton. Fig. 8
shows the image of the UAV camera detecting the target. The image contains three bounding boxes for the target: the red rectangle
shows the estimated position, the blue rectangle shows the predicted position, and the yellow rectangle shows the measured position.
11
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Fig. 11. Precision plot.

Fig. 12. Success plot.

Fig. 9 returns the estimated, predicted, and measured positions of the target during the simulation. As can be shown, KF worked
well to estimate the movement of the target. Fig. 10 presents the path of the UAV that detects the target.

Precision and success plots are the most common metrics used to evaluate MTT algorithms. Precision is the average of the
Euclidean distance between the center of the estimated bounding boxes and the center of the measured bounding boxes. The
precision plot shows the rate of frames whose precision is below the position error (pixels) threshold. Fig. 11 shows the precision
plot. As can be seen, the proposed MTT algorithm performs well and has a high precision rate compared to [18,25]. During the
simulations, the framework shows almost continuous tracking of the target even when the scale of the target changes and the target
is occluded.

The success is the intersection of the pixels of the estimated bounding boxes and the measured bounding boxes. The success plot
presents the rate of frames whose success is greater than the overlap threshold. Fig. 12 reveals the success plot. As can be seen, the
proposed MTT algorithm performs well and presents a high success rate compared to [18,25]. Despite its robustness and accuracy,
the CF-UAVs-MTST framework suffers from some limitations. For instance, it does not consider the case where the target speed is
considerably higher than the UAV flight speed. Moreover, it does not support 3D target motion estimation.

8. Conclusion

The proposed CF-UAVs-MTST framework presents a realistic simulation environment for simulating MTS and MTT tasks based
on cooperative UAVs-based systems using the integration of three tools, namely Gazebo, NS-3 and ArduCopter. The MTS algorithm
takes into account the onboard camera resolution, flight time and speed, and limited energy constraints to generate a search path
that should guarantee nearly complete coverage of RoI. Each UAV is assigned to a specific RoI and given the aerial waypoints. When
performing the MTS process, the target detection algorithm based on a cascade classifier is running, which allows identifying the
features of the pedestrian’s body. The UAV that detects the target must estimate its trajectory based on the KF to track it. When
the UAV detects a target, it should inform the GCS and its neighbor UAVs to let them know its current location and the location
of the target. Sharing this information among UAVs is important to perform the MTT task cooperatively and improve tracking
12
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accuracy. The proposed framework is evaluated through extensive simulations. The simulation results prove the robustness of the
developed framework CF-UAVs-MTST. Our current work focuses on proposing a routing protocol for FANETs that takes into account
the characteristics of UAVs such as high mobility, limited energy and network lifetime, etc.
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