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Abstract—The effective detection of plant diseases is crucial for
the optimal management of agricultural systems. In this paper,
we present our contributions in the context of detecting plant
diseases in an industrial greenhouse [1], focusing specifically on
tomatoes. Our main objectives are to develop and validate a
detection system using the YOLOv8 model and to explore its
potential for practical application in a real-world setting. To
facilitate our research, we introduce a novel dataset comprising
images of tomato leaves affected by various diseases. This dataset
serves as a valuable resource for training and evaluating our
detection model. We employ the YOLOv8 architecture, a state-
of-the-art object detection framework, and experiment with
different parameters to assess its performance in accurately
detecting diseased areas on tomato leaves. Through extensive
experimentation, we compare the performance of the YOLOv8
model using various parameters, such as different training strate-
gies, data augmentation techniques, and hyperparameter config-
urations. The results provide insights into the optimal settings for
achieving high detection accuracy and robustness. Furthermore,
we demonstrate the practical utility of our developed model by
conducting a real-life implementation within an industrial green-
house. This exemplifies the integration of our detection system
into an operational environment, showcasing its potential to assist
greenhouse operators in early disease detection, monitoring, and
decision-making processes. Our preliminary findings demonstrate
promising disease detection capabilities on tomato leaves inside
greenhouses, achieving an mAP50 score of 0.8 using our best
model. Although there is room for improvement, these initial
results indicate significant potential.
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I. INTRODUCTION

The accurate recognition and assessment of plant diseases play a
crucial role in the agriculture industry. If not treated fast enough,
diseases will spread and further contaminate surrounding plants,
resulting in more agricultural losses. The best solution is proactive
treatment, which requires detecting diseases before they become
parasites to other plants. Over the years, extensive research has
been conducted to tackle this issue by training advanced Artificial
Intelligence (AI) models capable of detecting plant diseases with an
accuracy greater than 95% and by creating datasets with sometimes
over 20 thousand images of plant diseases. We explored the contri-
butions of studies that have employed AI, such as in the study [2]
for plant disease detection. These works have leveraged advanced
techniques such as machine learning [3], and computer vision [4]
to extract meaningful features from plant images and accurately
determine their diseases and detect leaves.

Many of these datasets use images of leaves that have been placed
in a confined space with similar backgrounds, which may not be
ideal if we wish to automate the disease detection process by placing
cameras in a greenhouse. With our camera station in place in a

real greenhouse, we aim to provide a comprehensive performance
review on tomato leaf disease detection and how existing datasets,
in this case, the Plant Village dataset, perform using images in
a real greenhouse environment without any prior isolation of the
plant. For better results, we will train our models using two distinct
models; YOLOv8 and Faster R-CNN. We also used our camera
station to augment the existing dataset and gather more training data
for the Plant Village dataset. Our motivation is to fully automate a
greenhouse that is able to take photos and detect tomato diseases in
real-time without the need for any human interaction except for the
treatment of the disease.

Our contributions in this paper can be summarized as follows:
(1) We augmented the Plant Village dataset by adding our own
labelled images with roboflow in order to detect leaves and classify
them inside a real greenhouse; (2) We wrote an algorithm capable
of accurate leaves detection and cropping in order to test and
use our disease detection model; (3) We introduced performance
comparison with different parameters inside the model YOLOv8; (4)
We compared the performance of the model YOLOv8 to the model
Faster R-CNN; (5) We conducted our tests of leaf detection inside a
real greenhouse using an automated photo station.

Section II gives an overview of related work. Section III explains
the dataset we used and how we gathered additional data. Section IV
explains the models we chose to detect diseases. Section V shows
our results. Finally, Section VI concludes the paper.

II. RELATED WORKS

In this section, we discuss relevant literature that studied and
contributed to the issue related to tomato disease recognition. We
can divide our related work into two sections. The disease detection,
the leaf detection and the tomato maturity assessment.

A. Disease detection
Most of the studies that contributed to plant disease detection,

such as the tomato disease detection, used the Plant Village dataset
[5], a Kaggle repository. The study [3] used it to achieve the best
possible accuracy by comparing it with different types of models,
such as a random forest algorithm or a neural network, achieving
an accuracy of over 95%. Overall, most studies that used this dataset
achieved an accuracy of 95%. Additionally, one paper [6] summarized
all the methods used for disease detection inside plants by using AI
or image processing. This allowed us to make comparisons between
each process. In this paper, we focused on classifying tomato leaves.
Thanks to this study, we could see that the fastest and easiest way to
do it was using a neural network. Moreover, the paper [2] summarized
models used throughout the years to detect plant diseases. We can
learn that the model that got most papers on this subject was at this
time AlexNet. However, two models are already implemented inside
the model Faster R-CNN:

• ResNet50
• MobileNet

Since several studies also used ResNet50, we concluded that it was
better to use ResNet50 than MobileNet.



The study [7] created an application called PlantifyAI used to
determine, with image recognition, the disease of the tomato leaf and
describe how to fix it. Similarly, in the long term, we want to create a
web service accessible by farmers inside the website ALIVEcode.ca
that automatically notifies them if a disease is detected with our
camera station in order for them to treat it efficiently.

B. Leaf detection
In agriculture, many studies use an R-CNN or a YOLO model

to detect plant leaves. In order to create our model, we used these
studies as references. The study [9] used an image detection algorithm
in order to compare the performance of leaf counting from a non-
augmented dataset and an augmented dataset. This dataset contained
strawberry leaves instead of tomato leaves, but the goal is still
the same. In their research, they used an older version of YOLO,
YOLOv3, the algorithm Faster R-CNN, the SSD algorithm, and
finally CenterNet. Faster R-CNN achieved the highest performance
in both situations and was able to improve its accuracy from 75% to
almost 91%. Furthermore, the study [4] used the model MaskRCNN
in order to count the number of leaves, then proceeded with the
labelling using the neural network ResNet50. Most of the studies used
an advanced classification model. There are two main neural networks
that are used: MobileNet and ResNet50. As stated previously, since
most studies used ResNet50 instead of MobileNet, we opted for
ResNet50.

C. Tomato maturity assessment
Maturity assessment in fruits also uses visualization models such

as in this study [8] that used the mask R-CNN model in order to
detect the maturity stage of tomatoes. The model performed with
an R2 score of 0.80 on average and with difficulty to detect half-
ripened tomatoes. This model performs well on tomatoes because
the tomato stage is colour dependent. Contrary to the leaf detection
model presented in subsection II-B, this model of R-CNN is a masked
version which is required for generating an output mask of the tomato.

III. DATASET

Processing the dataset is an important part of machine learning.
In this section, we will discuss the methods we used to create
an exploitable dataset and the transformations we used in order to
augment our samples. We can describe our process into three sections:
III-A being the description of our dataset, III-B its improvement with
our samples, III-C the transformation used.

A. The structure of the dataset
The existing dataset was available inside roboflow. It was com-

posed of 32 labels. The goal of our model was primarily to detect
leaves and secondary to detect sick tomato leaves. To simplify our
dataset, we decided to remap labels into three categories :

• tomato leaf (Fig.1)
• sick tomato leaf (Fig.2)
• other leaf (Fig.3)

Fig. 1: Tomato leaf Fig. 2: Sick tomato
leaf Fig. 3: Other leaf

By merging multiple labels in our dataset, we noticed class
imbalance as shown in Fig.4. This could lead to an underfitting in our

model. As a result, we decided to reduce the number of samples inside
the label other leaf by half as shown in Fig.5. We will present in
section III-C another method we used to reduce the class imbalance.

Fig. 4: Default class distribu-
tion

Fig. 5: Reduced class distribu-
tion

The dataset is then separated into three parts, the train set, the test
set, and the validation set (See Fig.6). The train set is used to fit our
model parameters, the validation set is commonly used at each epoch
to check the quality performance. Finally, the train set is completely
separated and is used in order to check the final performance of the
model. Values used for the separation are the commonly used ones.
We took 80% for the train set and approximately 10% for the two
other sets as shown in Fig7.

Fig. 6: Train-set-test distribu-
tion

Fig. 7: Leaf distribution per-
centage

B. Improvement with our own dataset

Most of the studies such as [10] are done inside a controlled
environment, which is not representative of an industrial greenhouse.
Due to this, we improved the dataset with our own samples from
the greenhouse. In this study, we only focused on samples from the
early stages of the tomato plants. We took our samples with more
professional cameras, such as the 64-megapixel Arducam AutoFocus,
and with a more affordable one, a phone camera. The setup was
taking photos automatically every 2 hours above the plantation using
multiple lens focus, meaning that most of our samples are a top view
of the plants with shifting resolution. The background of our images
can change throughout time, between dirt and white tarpaulin. This
led us to take samples with both backgrounds. We added almost 300
images to our dataset and still counting, such as in Fig.9.



Fig. 8: Example of leaves form greenhouse

We used roboflow to label our samples, such as in Fig.8.

Fig. 9: Labelling of our samples

C. Image transformations
In this section, we will talk about the transformations we’ve done

in our samples. This method was used in order to perform data
augmentation, preventing our model to overfit. According to the
study[11], we can improve the accuracy of the model Faster R-CNN
by almost 10% by augmenting our data. We decided to take the dis-
tribution between each label and randomly transform them according
to it. To train our models, we used roboflow available transformations
for YOLO’s models, and we performed torch transformations too.

1) Class imbalance reduction: According to [12], the ratio
between labels strongly impacts the ratio of false positive and true
negative predictions. The impact is significant at a ratio of 1:8. As we
can see in Fig.7, the ratio between our samples is roughly the same
between tomato leaf and our sick tomato leaf. However, we have a
ratio of almost 1:4 between these labels and the label other leaf.

Note that this part will only concern the model Faster R-CNN
and their variations. Transformations were performed thanks to the
second version transform inside torchvision. This method is still in
beta stage in their library. Therefore, we personalized the wrapper in
order to make transformations. In order to reduce the effect of the
class imbalance, we decided to prefer to transform our data according
to the opposite of the probability of distribution of the class. For each
sample, the probability was calculated with the equation:

chance of transformation = 1
label distribution

2) Transformations applied: Here is a list of each possible
transformation applied. Results are shown on Fig.10:

• Crop: 0% minimum zoom and 24% maximum zoom

• Rotation: Between -30° and +30°
• Shear: ± 27° Horizontal, ± 29° Vertical
• Bounding box shear: ±15° Horizontal, ±15° Vertical
• Brightness: -36% and +0%
• Blur: Up to 1.25px
• Mosaic
Crop, rotation shear, and bounding box shear are applied strictly in

order to augment our data. We changed the brightness to simulate the
change in luminosity inside the greenhouse, and the blur to simulate
the switch of focus and resolution of our camera. Finally, the mosaic
will make our model more adaptable to new images. The mosaic
effect has only been applied to the model YOLOv8.

Fig. 10: Example of transformations applied

IV. MODELS

Image detection and classification models are commonly used, and
many models have come out during these years. In order to detect
diseases in our plants, we decided to take two different types of
models. YOLO’s model and Faster R-CNN’s model. In this section,
we will first introduce these two models. Then we will explain their
architecture and finally how we fine-tuned our models.

A. YOLOv8 and Faster R-CNN introduction
1) Faster R-CNN model: Faster R-CNN (Region-based Convo-

lutional Neural Network) is an influential object detection algorithm
introduced in 2014. It utilizes a two-stage approach, generating region
proposals and then classifying and refining them using a CNN. Faster
R-CNN has been foundational in the development of faster and more
accurate object detection algorithms. It has found applications in
image analysis, surveillance, and autonomous driving. Models are
available on Torch, we used the series Faster R-CNN. it’s a faster
version of the Faster R-CNN. Models available on torch are:

• fasterrcnn resnet50 fpn from the study [13]
• Faster R-CNN resnet50 fpn v2 from the study [14]
• fasterrcnn mobilenet v3 large fpn
• fasterrcnn mobilenet v3 large 320 fp
We decided to use version 2 of the model with ResNet50 in order

to detect our disease, since it was more used than mobilenet.
2) YOLOv8: YOLO has wide applications in fields like au-

tonomous driving, surveillance, and robotics. Its real-time perfor-
mance and high accuracy make it a preferred choice for object
detection tasks. YOLO has revolutionized computer vision with its
speed and efficiency in detecting objects. YOLOv8 is the last model
in the YOLO’s series. It has been released by the library ultralytics.
YOLO’s models have become the leader of image detection models
thanks to their performance on the COCO dataset. COCO dataset is
a database of over 330k images and 81 categories. It is commonly
used to check a model’s performance. Fig.11 shows the progression
of each model of YOLO’s series.



Fig. 11: Example of transformations applied

B. The model’s architecture
1) Faster R-CNN’s model: In this article, we decided to use

faserRCNN v2 and Faster R-CNN v3, available on Torch. The
version 2 of the model has a ResNet 50-FPN backbone [15] and
version 3 has a MobileNetV3-Large FPN backbone [16]. Fig.12
shows the global architecture of Faster R-CNN. VGG layers are the
architecture of convolutional layers used for high-resolution image
transformation. It is the backbone. The region of interest uses a spatial
pyramid layer [17]. Finally, there are two final neural networks of size
1024 and one layer of size 2 to detect whether the tomato leaf is sick
or not.

Fig. 12: Architecture of Faster R-CNN

2) YOLOv8: The article [18] explains the construction of each
version of YOLO. To train our data, we used the last version of
YOLOv8 available on torch. Its architecture provided by [19] is
almost the same as YOLOv5. Its CSP Layer has been replaced
by a C2f module in order to improve detection accuracy. The 6×6
convolutional layers backbone was changed into a 3×3 convolutional
layer. We used the large scale of this model.

V. RESULTS

In this section, we will be using 4 types of metrics.
• The box loss, the loss of the predicted boxes.
• The recall, the fraction between the predicted relevant instance

between all the relevant instances also known as sensitivity.
• The precision, the fraction of relevant instances among the

retrieved instances.
• The mean average precision 50 (mAP50), the average precision

of object detection with an intersection of union above 50
In order to reduce the training time, we dropped the category
other leaf. We decided to test 3 different types of datasets:

• Images from the greenhouse called natural.
• Images from the greenhouse augmented called leaves v1.
• Images from leaves and greenhouse augmented mixed.

A. Faster R-CNN
In this section, we will talk about the results of the model Faster

R-CNN.
We decided to train our models, for 25 epochs. The model seems

to perform its best on the dataset mixed. At the end of the training
phase, we achieve:

• 0.20 of box loss on natural on Fig.13 and 50% of mAP50 on
Fig.14.

• 0.22 of box loss on leaves v1 on Fig.15 and 60% of mAP50
on Fig.16.

• 0.30 of box loss on mixed on Fig.17and 60% of mAP50 on
Fig.18.

.
These results are expected because the natural version and

leaves v1 have fewer samples and fewer diversity than the mixed
one. Moreover, we can see that the mAP50 of mixed is higher than
the others.

Fig. 13: Box loss of yolov8 on
natural

Fig. 14: Box loss of yolov8 on
natural

Fig. 15: Box loss of Faster R-
CNN on natural

Fig. 16: Box loss of Faster R-
CNN on leaves v1

Fig. 17: Box loss of Faster R-
CNN on mixed

Fig. 18: Box loss of Faster R-
CNN on mixed

B. YOLOv8
In this section, we will talk about the results using the model

yolov8.



The Yolov8 model seems to achieve a high box loss according to
Fig.19. However, it performs well at mapping, achieving a mAP50
of 60% as shown in Fig.20. Moreover, we can see that the model has
a bad precision and recall as shown in Fig.21. This can be explained
by the lacking quantity of sick leaves inside our dataset.

Fig. 19: train and test box loss of yolov8 models

Fig. 20: mAP50 of yolov8

Fig. 21: Recall and precision of yolov8

C. Comparison

On Fig.22, we can see the result on mAP50 on each label. We can
see that the model yolov8 on the natural dataset achieves the best
performance among our models. We are aware of the lack of data on
our validation set (only 4 images) on the natural dataset. Therefore,
we should gather more data in order to evaluate our models. In Fig.23,
we have the prediction from the model of the model yolov8 on the
natural dataset.

Fig. 22: mAP50 of labels on each model

Fig. 23: Caption

VI. CONCLUSION AND FUTURE WORKS

We’ve seen that the detection of the leaves works well. By having
a map overage of 60 % we detect most of the plants. However, we
need to improve the results of the classification. Detecting leaves that
are sick from the view of our camera is difficult due to the number
of noise that can occur and the distance between plants. Moreover,
we can’t detect every plant. Further data on the greenhouse will
be collected and labelled in order to increase the model’s accuracy.
Moreover, we will increase the input size of our models and the
quality of our samples in order for the model to detect disease easily.

In future work, we want to link the greenhouse parameters such as
temperature or humidity with the disease apparition. The final goal
is to totally prevent the apparition of disease thanks to the data we
collect there.
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