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  Abstract – The LRIMa city is a continuous, expandable and 

polyvalent project focused on IoT and IA solutions for 

research and learning. It serves as a testbed for exploring 

IoT architectures, including cloud centralized and fog on-

device computation. Additionally, the city enables the 

development of AI models for autonomous vehicle 

navigation. Our smart city implementation encompasses 

various embedded systems such as smart motorized 

vehicles, a speed radar, smart parking systems, adaptive 

streetlights, and a remotely controlled bridge. To facilitate 

autonomous driving, we have created a Convolutional 

Neural Network (CNN) based on NVIDIA's model for 

predicting steering angles from input images. Moreover, we 

have developed a YOLOv8-based traffic light detection 

model and a cascade classifier for stop sign detection. For 

other components, we have employed diverse AI solutions, 

ranging from license plate detection and identification to 

hand gesture recognition with Mediapipe. We hope that our 

city will serve as a valuable resource for researchers and 

newcomers to explore and develop innovative IoT and AI 

solutions, promoting experimentation and advancements in 

these fields. 

 

Keywords: Artificial Intelligence, Internet of Things, smart 

city, Aliot, LRIMa, ALIVEcode. 

I. INTRODUCTION 

  In the last few years, the creation of smart cities has been a 

well talked about subject [1-2], and it has become even more so 

since the rising popularity of AI technology in education [3]. 

The idea of having a self-driven city with wireless transmission 

of data between motorized vehicles resulting in direct changes 

of behaviors at a real-life scale may seem far away, but we are 

convinced that it can be sooner with the correct workforce. AI 

has never been more important as of today, that is why it is of 

the utmost importance that this field be understood by 

newcomers since they will be the next generation of scientists 

most likely to bring this idea to life. This is why we created the 

LRIMa City (see Fig.1), a long-term project used as a testbed 

for new ideas and algorithms to promote the development of 

smart cities. In our previous work, we created an IoT 

development kit for personalized smart ecosystems named aliot 

[4] which was used in a previous version of the LRIMa City 

and is still used to this day. This version was a cloud-based 

solution solely relying on cloud computing for data sharing and 

route navigation. This solution had many issues such as high 

latency, unpredictability, and faulty navigation due to 

preprogrammed driving. The new LRIMa City we propose 

fixes those issues and adds new functionalities such as a speed 

radar and a smart parking with hands-recognition controls. 

 

Fig.1. The LRIMa City being tested with the autonomous 

vehicles, the speed-radar and the smart bridge. 

 

  Our contributions in this paper can be summarized as 

follows: (1) We developed a CNN capable of predicting the 

steering angle from an input image. (2) We developed a traffic 

light detection model using YOLOv8 (You Only Look Once). 

(3) We created a fog on-device solution to decentralize data, 

increase security and reduce latency in the city. (4) We created 

a smart parking gate controllable using MediaPipe hand-

tracking models. (5) We created multiple other enticing and 

interactive components in the LRIMa City. (6) We used our 

smart city as a testbed for autonomous vehicle navigation and 

recorded the process. (7) We showcased the LRIMa City in 

multiple workshops with newcomers to introduce AI and IoT. 

 

  Outline: Section II gives a brief overview of similar smart 

cities projects and compares them to the LRIMa City. Section 

III presents the different architectures for communications 

tested with the smart city. Section IV describes various smart 

components of the city. Section V shows the navigation system 

of our motorized vehicles throughout the city. Finally, section 

VI concludes the paper. 

  

II. SIMILAR SMART CITIES 

  Numerous researchers have presented their solutions for smart 

cities, highlighting the growing interest in this field. In light of 

this, we compare in this section, the LRIMa City with other 

existing smart cities and elucidate the distinctive aspects of our 

own. By conducting this comparison, we aim to provide 

valuable insights into the innovative approaches and novel 

features employed in our smart city project, showcasing its 

potential to revolutionize urban environments. These 

comparisons can be seen in Table 1 below.



  To the best of our knowledge, the projects presented [5-7] in 

the table are the only ones offering a smart city as a playground 

for new experiments coupled with education. 

Table 1. Similar smart cities projects compared to the LRIMa 

City 
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LRIMa City ✔ ★ ★ ✔ ✔ ✔ ✔ ✔ **** 

DuckieTown  

[5] 
✔   ✔ ✔  ✔ ✔ ** 

Micro:bit  

[6] 
✔      ✔  *** 

STEAM  

[7] 
✔   ✔     ** 

* 1 to 4 stars (few - many)      

The ★ represent our key strengths 

✔ Implemented Features       

 Empty cells indicate that the features are not implemented 

 

  For a more in-depth comparison, Duckietown and LRIMa City 

are both innovative projects that aim to explore and advance the 

field of autonomous vehicles, albeit with some key differences 

in their design and implementation. 

Duckietown, first and foremost, is an open-source project that 

focuses on affordable and accessible education in the field of 

robotics and self-driving vehicles. It utilizes small "Duckiebot" 

vehicles that are equipped with a Raspberry Pi, and a camera. 

These bots navigate through a "Duckietown", a miniature town 

composed of roads marked with white and yellow tape, traffic 

signs, and obstacles. The Duckiebots primarily rely on simple 

computer vision techniques to navigate the town, interpreting 

the tape lines as roads and using colors and shapes to recognize 

signs and obstacles. 

On the other hand, LRIMa City is a more technologically 

advanced and complex system. The self-driving cars in LRIMa 

City are equipped with a Raspberry Pi 4 and a front-facing USB 

camera. The LRIMa cars leverage more advanced AI models 

for navigation, including a steering angle prediction model 

based on NVIDIA's CNN, a traffic light detection model using 

YOLOv8, and a stop sign detection model. These models 

collaborate to ensure safe and efficient driving within the 

miniature smart city. 

In addition, LRIMa City incorporates a wider range of smart 

city elements than Duckietown. While both have traffic lights, 

LRIMa City also has a speedometer and a smart parking, 

making it a more comprehensive testbed for exploring a variety 

of autonomous vehicle scenarios. 

In summary, while Duckietown focuses on simple, accessible 

learning for autonomous vehicle concepts, LRIMa City steps up 

the technological complexity and incorporates more elements 

of a smart city to provide a more advanced testing ground for 

self-driving vehicle technologies. 

III. The Smart City Connectivity Solutions 

   

Fig.2. Fog-based approach 

The LRIMa City underwent two distinct life cycles, each 

characterized by different approaches. The initial phase 

primarily emphasized establishing connectivity with the cloud. 

While this approach offered certain advantages, our team opted 

for a more decentralized solution due to encountered challenges 

pertaining to efficiency and reliability. 

 

A. Cloud-based approach 

 

  During the first life cycle, the LRIMa City placed significant 

emphasis on achieving robust connectivity with the cloud. This 

approach aimed to leverage cloud-based technologies and 

services to enhance various aspects of urban life. However, as 

the project progressed, it became apparent that certain 

difficulties arose, particularly in terms of efficiency and 

reliability. These challenges prompted a revaluation of the 

initial approach, leading to a shift towards a more decentralized 

solution. Our old infrastructure is shown in Fig.2 above except 

for the fog layer. 

B. Fog-based approach 

 By adopting a decentralized approach, the LRIMa City project 

aimed to leverage distributed technologies and infrastructure. 



This paradigm shift not only mitigated the shortcomings faced 

previously but also paved the way for new possibilities and 

opportunities. The subsequent life cycle of the LRIMa City 

represented a departure from the initial focus on cloud 

connectivity, emphasizing the advantages of a decentralized 

solution in terms of efficiency and reliability. A representation 

of the fog-based infrastructure is shown in Fig.2 above. 

IV. The Smart Components 

 One key factor that differentiates the LRIMa City and makes it 

unique from its competitors is the presence of multiple unique 

smart components designed purposefully for the city. Some of 

the components are shown in Fig.3 below. 

 
Fig.3. Some components used in the city 

 

A. Self-Driving Vehicle 

  Our self-driving car, inspired from our previous work [8], 

equipped with a Raspberry Pi 4, two DC motors, a servomotor, 

a battery, and a single front-facing camera, navigates the 

LRIMa City using multiple AI models that work together to 

ensure safe and efficient driving within the miniature smart city. 

These key models include: 

1. Steering Angle Prediction Model: SAPM 

 This model is inspired by and adapted from NVIDIA's end-to-

end deep learning model for self-driving cars, as described in 

their paper [9] as well as a CNN for lane-recognition [10]. The 

model employs a CNN to predict steering angles from raw 

images captured by a camera mounted on the vehicle. By 

processing these images, the model can understand the current 

driving scenario and generate appropriate steering commands, 

ultimately enhancing the safety and efficiency of our smart city. 

  Our model, as illustrated in Fig.4 below, consists of several 

layers, each designed to process input images in distinct ways. 

The normalization layer scales the input image to a fixed range, 

typically between -1 and 1, ensuring consistency in the data and 

improving model convergence during training. Following this, 

the convolutional layers perform core feature extraction by 

applying filters to the input images to detect patterns such as 

edges, corners, and textures. In our model, we use multiple 

convolutional layers with varying filter sizes and depths to 

capture both local and global features. For instance, the first 

convolutional layer has 24 filters with a size of 5x5 and a stride 

of 2, capturing low-level features like edges and corners. 

 

Fig.4. Steering angle prediction model architecture 

  The subsequent layers use different combinations of filter 

sizes, depths, and strides to learn increasingly complex patterns 

in the input images. Mathematically, the kernel convolution 

operation in the convolutional layers can be represented as: 

𝐺(𝑚, 𝑛) = ℎ ∗ 𝑓(𝑚, 𝑛)

=  ∑

𝑗

∑

𝑘

ℎ(𝑗 ∗ 𝑘)𝑓(𝑚 − 𝑗, 𝑛 − 𝑘) 

  Where 𝐺(𝑚, 𝑛) represents the output value at position (𝑚, 𝑛) 

in the resulting feature map. The input feature map is denoted 

as 𝑓(𝑚, 𝑛), and the filter/kernel is represented by ℎ(𝑗, 𝑘). The 

inner summation is taken over the values of 𝑗 and the outer 

summation is taken over the values of 𝑘. This formula computes 

the convolution by sliding the filter over the input feature map 

and multiplying the corresponding elements of the filter and the 

local region of the input. The results of these element-wise 

multiplications are summed up to obtain the output value at 

each position (𝑚, 𝑛) in the feature map. The convolution 

operation helps the model to learn spatial hierarchies by 

combining local features in the input to extract higher-level 

features in the output. 



 After the convolutional layers, activation layers introduce non-

linearity to the model by applying activation functions such as 

the Exponential Linear Unit (ELU) function, enabling the 

model to learn complex, non-linear relationships between 

inputs and outputs. Each activation layer follows a 

convolutional layer, applying the ELU function element-wise 

to the output of the preceding convolutional layer. The 

activation function, in our case the ELU function, can be 

expressed mathematically as: 

𝐸𝐿𝑈(𝑥) =  𝑥, 𝑓𝑜𝑟 𝑥 ≥  0 

𝐸𝐿𝑈(𝑥) =  𝛼(𝑒𝑥  −  1), 𝑓𝑜𝑟 𝑥 <  0  

  Where 𝑥 is the input to the activation function, and 𝛼 (𝑎𝑙𝑝ℎ𝑎) 

is a hyperparameter (typically set to 1) that determines the slope 

of the function for negative inputs. The ELU function helps the 

model to mitigate the vanishing gradient problem, which can 

occur when training deep neural networks, by ensuring that the 

gradients do not become too small during backpropagation, thus 

facilitating the learning process. 

 Subsequently, a flatten layer is employed after the last 

convolutional layer to convert the multi-dimensional feature 

maps into a one-dimensional vector, enabling a seamless 

transition from the spatial feature extraction in the 

convolutional layers to the higher-level representation in the 

fully connected layers. 

  Finally, the fully connected layers serve as the last stage of the 

model, connecting the high-level features extracted by the 

previous layers to the output layer, which predicts the steering 

angle. The first fully connected layer has 1164 neurons, 

followed by a second fully connected layer with 100 neurons, 

and a third fully connected layer with 50 neurons. The reduction 

in the number of neurons across these layers enables the model 

to learn a compressed representation of the input features, 

focusing on the most relevant and crucial aspects for predicting 

the steering angle. The last fully connected layer has a single 

neuron that outputs the predicted steering angle. The 

computation in the fully connected layers can be represented by 

a matrix multiplication and an added bias term: 

𝑜𝑢𝑡𝑝𝑢𝑡 =  𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛(𝑊 ∗  𝑖𝑛𝑝𝑢𝑡 +  𝑏) 

  In this equation, 𝑊 represents the weight matrix, 𝑖𝑛𝑝𝑢𝑡 is the 

vector of input features, 𝑏 is the bias term, and 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 is 

the activation function (in our case, the Exponential Linear Unit 

or ELU). This equation highlights the linear combination of 

input features with weights and biases, followed by the 

application of the activation function to introduce non-linearity. 

2. Traffic Light Recognition Model: TLRM 

  Our self-driving car also relies on a Traffic Light Recognition 

Model, which plays a vital role in ensuring the vehicle adheres 

to traffic rules and regulations. We utilized the YOLOv8 object 

detection architecture, building upon the pretrained 

YOLOv8l.pt default weights to train our custom model 

specifically for our miniature smart city's traffic lights. 

  YOLOv8 (You Only Look Once) is a state-of-the-art object 

detection framework that is known for its high accuracy and 

real-time processing capabilities. The architecture divides the 

input image into a grid, and each cell in the grid is responsible 

for detecting objects within its boundaries. This single-shot 

approach enables the model to efficiently process images and 

make predictions with minimal computational resources. The 

YOLOv8l.pt default weights provide a starting point for 

training the model, which has already been pretrained on a 

large-scale dataset, allowing for faster convergence and 

improved performance on our custom traffic light dataset. 

3. Stop Sign Recognition Model: SSRM 

  Our stop sign detection model was sourced from an existing 

GitHub repository [11]. This pre-trained model was ideal for 

our purposes, as it had already been trained on various types of 

stop signs and exhibited excellent performance. The model is 

an XML cascade classifier, which is a popular approach for 

detecting specific objects in images. 

  Cascade classifiers are a type of machine learning model that 

use a cascade function trained from positive and negative 

images to detect objects. In this case, the cascade function is 

trained to recognize stop signs. The model operates by scanning 

an image in a sliding window fashion, analyzing different 

regions of the image at various scales to detect stop signs. If a 

stop sign is detected, the cascade classifier returns the 

coordinates of the bounding box around the detected stop sign. 

  By utilizing this pre-trained stop sign detection model from 

the GitHub repository, we were able to save time and resources 

that would have been spent on collecting and annotating a 

dataset, as well as training a model from scratch. The model's 

high performance and compatibility with our custom traffic 

infrastructure in the LRIMa City made it an ideal choice for our 

stop sign detection needs. 

B. Smart Parking 

  The smart parking system in LRIMa City offers a seamless 

and efficient parking experience. It incorporates various 

technologies to enhance convenience and optimize parking 

space utilization. 

 

Fig.5. Recognizing hand gestures to automatically open the 

parking barrier 

  One of the key features of the smart parking system is the 

barrier control mechanism shown in Fig.5. The parking 



entrance is equipped with a camera that utilizes AI-powered 

MediaPipe technology [12]. This camera captures hand 

gestures or specific movements made by users. By recognizing 

these gestures, the system can automatically open the parking 

barrier, allowing smooth entry without the need for physical 

tickets or manual operation. This hands-free access control not 

only enhances user convenience but also promotes contactless 

interactions, which is especially important in today's context. 

 
Fig.6. The LRIMa City’s Smart Parking 

  Furthermore, the smart parking system utilizes a high-

positioned camera located in a 3D printed tower to detect 

available parking spots as shown in Fig.6. This camera provides 

a panoramic view of the parking area, offering a better vantage 

point to detect all the parking spots. Through advanced 

computer vision algorithms, the camera scans the parking area 

in real-time, analyzing the occupancy of each parking space. 

The system then identifies and highlights the open spots on our 

web platform, providing users with an accurate and up-to-date 

view of parking availability. This feature eliminates the 

frustration of searching for parking spaces and allows users to 

easily locate an open spot from a high-level perspective. 

  By combining barrier control with real-time parking spot 

detection and display, the smart parking system in LRIMa City 

offers a comprehensive solution to optimize the parking 

experience. It simplifies access to the parking area, minimizes 

the time spent searching for parking spaces, and enhances 

overall user satisfaction. 

V. Training & results - AI models 

  The following sub-sections will present the results of our 

numerous algorithms used in the LRIMa City. Alongside the 

quantitative results, we recorded a video showcasing the smart 

city with examples of interactions between the self-driving 

vehicle and the other smart components [13].  

A. SAPM 

  The training process for our Steering Angle Prediction Model 

involved the use of a large dataset that was constructed by 

collecting data while remotely driving the car using a controller. 

During this process, images were captured, and their 

corresponding steering angles were recorded, providing the 

model with examples of the "appropriate way" to drive. To 

enhance the robustness and diversity of our dataset and prevent 

overfitting—a phenomenon where a model learns the training 

data too well, reducing its ability to generalize on unseen data—

we employed data augmentation techniques, such as rotations, 

translations, flipping, and adjusting brightness or contrast. 

These techniques not only increased the size of our dataset but 

also helped our AI model generalize better across various 

driving scenarios and conditions. The augmented dataset was 

then divided into training and validation sets, with the former 

used to train the model and the latter to evaluate its 

performance. This separation allowed us to monitor and adjust 

the model to ensure it maintained good generalization 

capabilities, further minimizing the risk of overfitting. 

 Once the architecture of the neural network has been 

established and the dataset prepared, the model is trained using 

the augmented dataset of images and corresponding steering 

angles collected from actual driving scenarios. The training 

process involves minimizing the error between the predicted 

steering angles and the actual steering angles from the training 

data. To quantify this error, we use the Mean Squared Error 

(MSE) loss function, which calculates the average of the 

squared differences between the model's predictions and the 

ground truth steering angles: 

𝑀𝑆𝐸 =  
1

𝑛
 ∑

𝑛

𝑖=1

(𝑌𝑖 − Ŷ𝑖)2 

  Here, Ŷ𝑖 represents the predicted steering angles, 𝑌𝑖 denotes 

the ground truth steering angles, and 𝑛 is the number of samples 

in the dataset. 

  To minimize the MSE loss, we employ the Adam (Adaptive 

Moment Estimation) optimizer, which is an adaptive learning 

rate optimization algorithm. Adam combines the advantages of 

two other popular optimization algorithms, AdaGrad and 

RMSProp, by dynamically adjusting the learning rate for each 

weight and bias parameter in the model based on the first and 

second moments of the gradients. This approach allows for 

faster convergence and improved performance during training. 

  During the training process, the model's parameters (weights 

and biases) are iteratively updated based on the gradients of the 

loss function with respect to the parameters. The Adam 

optimizer adjusts these parameters in a way that minimizes the 

MSE loss, ultimately fine-tuning the model to predict steering 

angles accurately from input images. The choice of the 

optimizer and loss function plays a crucial role in the model's 

ability to learn the mapping between images and steering angles 

effectively, ensuring the self-driving car can navigate safely and 

efficiently in various driving scenarios. 

Fig.7 displays the training and validation loss as a function of 

the number of epochs. In the initial stages of training, we 

observed a substantial decrease in both training and validation 

loss within the first 10 epochs. Subsequently, the model's loss 

continued to decrease, albeit at a slower rate, eventually 

reaching a plateau around 55 epochs. Beyond this point, the 

decrease in loss became less significant, indicating the potential 

onset of overfitting if training were to continue for a few dozen 

more epochs. The model converged with a validation MSE of 

0.037, indicating its effectiveness in predicting steering angles.  

To evaluate the robustness and generalization capabilities of 

our model, we subjected it to various driving scenarios and 



conditions within the LRIMa City. In most situations, the model 

demonstrated strong performance, accurately predicting 

steering angles under different lighting conditions and 

environmental factors. However, we encountered challenges in 

scenarios with sharp turns, where the field of view (FOV) of the 

front-facing camera wasn't wide enough to capture both lane 

lines. This observation suggests potential areas for 

improvement and further model refinement. 

 

Fig.7. Training and validation loss over time (epochs) 

    

 

 

 

 

Fig.8. Qualitative evaluation of steering angle predictions 

 

Fig.8 presents a qualitative evaluation of our model, 

showcasing its predictions on real-world images alongside the 

ground truth steering angles. In most cases, the model 

accurately predicted the steering angles, allowing the self-

driving car to navigate the city efficiently. However, a few 

instances revealed discrepancies between the predicted and 

ground truth angles, especially in complex driving situations. 

These cases provide insights into the model's limitations and 

can guide future refinements to enhance its performance.   

Overall, the results indicate that our Steering Angle Prediction 

Model is effective in predicting steering commands for our self-

driving car in the LRIMa City. The model demonstrates good 

generalization capabilities across various driving scenarios and 

conditions, making it a valuable component of our miniature 

smart city's autonomous driving system. Future work will focus 

on improving the model's performance in challenging situations 

and further optimizing its architecture for increased efficiency 

and accuracy. 

B. TLRM 

  To create a suitable dataset for training the Traffic Light 

Recognition Model, we collected images of our custom traffic 

lights in various states (red, yellow, green) and under different 

lighting conditions. These images were then manually 

annotated, with bounding boxes drawn around each traffic light 

and labeled according to its current state. This process of 

annotating and labeling the images ensured that our model 

could learn to accurately detect and recognize the different 

traffic light states in the LRIMa City. 

  After assembling the dataset, we divided it into training and 

validation sets. The training set was used to fine-tune the 

YOLOv8 model with our custom traffic light data, while the 

validation set was employed to evaluate the model's 

performance during the training process. This allowed us to 

monitor the progress of our model and make any necessary 

adjustments to prevent overfitting and optimize its 

generalization capabilities. 

  Fig.9 depicts the model's Mean Average Precision (mAP@50-

95), a widely utilized metric in object detection tasks. This 

metric assesses the model's accuracy in detecting objects and 

their corresponding classes across various Intersection over 

Union (IoU) thresholds, ranging from 0.5 to 0.95 with a step 

size of 0.05. During the training process spanning 50 epochs, 

we observed that the mAP reached a plateau around the 20th 

epoch, indicating that further training beyond this point would 



yield diminishing returns and potentially lead to overfitting. 

Notably, our model achieved an impressive mAP@50-95 score 

exceeding 80%, demonstrating its robust performance in 

accurately detecting and classifying traffic lights. 

 

Fig.9. mAP@50-95 over time (epochs) 

 

  To provide further insight into the model's performance, 

Fig.10.A showcases a selection of real-life images from the 

validation set containing labeled objects, representing the actual 

ground truth values, allowing for a direct comparison with the 

model's predictions depicted in Fig.10.B below. These images 

demonstrate the model's ability to detect and classify traffic 

lights under varying conditions and scenarios, revealing that the 

model can accurately recognize the vast majority of images 

with only a few instances of misclassification (false positives 

and false negatives), especially with red and yellow lights. 

 

Fig.10.A.  Images presenting labeled traffic lights 

 

 

Fig.10.B. Images presenting the model's predictions with their 

corresponding confidence scores 

  By analyzing these metrics and visualizations, we can 

conclude that our YOLOv8 Traffic Light Recognition Model 

exhibits strong performance in detecting and classifying traffic 

lights within the LRIMa City. However, there may still be areas 

for improvement, as highlighted by some of the graphs and 

visualizations. 

VI. CONCLUSION 

  In conclusion, the LRIMa City project has undergone two 

distinct phases, each contributing to its evolution and 

development. The initial phase centered around implementing 

an IoT solution utilizing a cloud-based infrastructure, while the 

current phase has shifted the focus towards AI-powered 

navigation and enhanced interactions between components 

within the fog layer. The project has proven to be an ideal 

platform for innovation, encouraging the exploration of novel 

ideas and technologies. 

Looking ahead, our future endeavors aim to advance the 

LRIMa City even further. One key objective is the development 

of a robust traffic navigation system, enabling multiple cars to 

communicate and cooperate with each other seamlessly. This 

collaborative approach will enhance the efficiency and safety 

of the self-driving cars within our smart city, facilitating 

smooth and reliable transportation in complex scenarios. 

Additionally, we aspire to integrate an obstacle recognition and 

avoidance model into our self-driving cars. By leveraging 

cutting-edge AI algorithms, our vehicles will possess the 

capability to identify and respond to potential obstacles in real-

time, ensuring enhanced safety and mitigating risks during 

navigation within the LRIMa City. 

The LRIMa City serves as a living laboratory for ongoing 

innovation, and we are committed to continuously pushing the 

boundaries of AI, IoT, and smart city technologies. Through 

our ongoing research and development efforts, we strive to 

create a future where autonomous systems can navigate urban 

environments efficiently, safely, and seamlessly. 
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