
LRIMa city: a Fog-Computing-Based Smart City with Integrated Self-

Driving Cars
Jihene Rezgui, Enric Soldevila, Abderrazak Mokraoui

Laboratoire Recherche Informatique Maisonneuve (LRIMa)

Montreal, Canada

jrezgui@cmaisonneuve.qc.ca

 Abstract – The LRIMa city is a continuous, expandable and

polyvalent project focused on IoT and IA solutions for

research and learning. It serves as a testbed for exploring

IoT architectures, including cloud centralized and fog on-

device computation. Additionally, the city enables the

development of AI models for autonomous vehicle

navigation. Our smart city implementation encompasses

various embedded systems such as smart motorized

vehicles, a speed radar, smart parking systems, adaptive

streetlights, and a remotely controlled bridge. To facilitate

autonomous driving, we have created a Convolutional

Neural Network (CNN) based on NVIDIA's model for

predicting steering angles from input images. Moreover, we

have developed a YOLOv8-based traffic light detection

model and a cascade classifier for stop sign detection. For

other components, we have employed diverse AI solutions,

ranging from license plate detection and identification to

hand gesture recognition with Mediapipe. We hope that our

city will serve as a valuable resource for researchers and

newcomers to explore and develop innovative IoT and AI

solutions, promoting experimentation and advancements in

these fields.

Keywords: Artificial Intelligence, Internet of Things, smart

city, Aliot, LRIMa, ALIVEcode.

I. INTRODUCTION

 In the last few years, the creation of smart cities has been a

well talked about subject [1-2], and it has become even more so

since the rising popularity of AI technology in education [3].

The idea of having a self-driven city with wireless transmission

of data between motorized vehicles resulting in direct changes

of behaviors at a real-life scale may seem far away, but we are

convinced that it can be sooner with the correct workforce. AI

has never been more important as of today, that is why it is of

the utmost importance that this field be understood by

newcomers since they will be the next generation of scientists

most likely to bring this idea to life. This is why we created the

LRIMa City (see Fig.1), a long-term project used as a testbed

for new ideas and algorithms to promote the development of

smart cities. In our previous work, we created an IoT

development kit for personalized smart ecosystems named aliot

[4] which was used in a previous version of the LRIMa City

and is still used to this day. This version was a cloud-based

solution solely relying on cloud computing for data sharing and

route navigation. This solution had many issues such as high

latency, unpredictability, and faulty navigation due to

preprogrammed driving. The new LRIMa City we propose

fixes those issues and adds new functionalities such as a speed

radar and a smart parking with hands-recognition controls.

Fig.1. The LRIMa City being tested with the autonomous

vehicles, the speed-radar and the smart bridge.

 Our contributions in this paper can be summarized as

follows: (1) We developed a CNN capable of predicting the

steering angle from an input image. (2) We developed a traffic

light detection model using YOLOv8 (You Only Look Once).

(3) We created a fog on-device solution to decentralize data,

increase security and reduce latency in the city. (4) We created

a smart parking gate controllable using MediaPipe hand-

tracking models. (5) We created multiple other enticing and

interactive components in the LRIMa City. (6) We used our

smart city as a testbed for autonomous vehicle navigation and

recorded the process. (7) We showcased the LRIMa City in

multiple workshops with newcomers to introduce AI and IoT.

 Outline: Section II gives a brief overview of similar smart

cities projects and compares them to the LRIMa City. Section

III presents the different architectures for communications

tested with the smart city. Section IV describes various smart

components of the city. Section V shows the navigation system

of our motorized vehicles throughout the city. Finally, section

VI concludes the paper.

II. SIMILAR SMART CITIES

 Numerous researchers have presented their solutions for smart

cities, highlighting the growing interest in this field. In light of

this, we compare in this section, the LRIMa City with other

existing smart cities and elucidate the distinctive aspects of our

own. By conducting this comparison, we aim to provide

valuable insights into the innovative approaches and novel

features employed in our smart city project, showcasing its

potential to revolutionize urban environments. These

comparisons can be seen in Table 1 below.

 To the best of our knowledge, the projects presented [5-7] in

the table are the only ones offering a smart city as a playground

for new experiments coupled with education.

Table 1. Similar smart cities projects compared to the LRIMa

City

In
te

g
ra

te
d

 l
ea

rn
in

g

In
te

g
ra

te
d

 I
o

T
 S

o
lu

ti
o
n

R
em

o
te

 c
it

y
 c

o
n

tr
o

l
v

ia

w
eb

 P
la

tf
o

rm

S
el

f-
d

ri
v

in
g

 c
ar

s

T
ra

ff
ic

 l
ig

h
t

d
et

ec
ti

o
n

R
ea

l
st

o
p

 s
ig

n

re
co

g
n

it
io

n

M
o

d
u

la
r

h
ar

d
w

ar
e

V
eh

ic
le

-t
o

-v
eh

ic
le

co
m

m
u

n
ic

at
io

n

In
fr

as
tr

u
ct

u
re

 v
ar

ie
ty

(c
it

y
 e

le
m

en
ts

)

LRIMa City ✔ ★ ★ ✔ ✔ ✔ ✔ ✔ ****

DuckieTown

[5]
✔ ✔ ✔ ✔ ✔ **

Micro:bit

[6]
✔ ✔ ***

STEAM

[7]
✔ ✔ **

* 1 to 4 stars (few - many)

The ★ represent our key strengths

✔ Implemented Features

 Empty cells indicate that the features are not implemented

 For a more in-depth comparison, Duckietown and LRIMa City

are both innovative projects that aim to explore and advance the

field of autonomous vehicles, albeit with some key differences

in their design and implementation.

Duckietown, first and foremost, is an open-source project that

focuses on affordable and accessible education in the field of

robotics and self-driving vehicles. It utilizes small "Duckiebot"

vehicles that are equipped with a Raspberry Pi, and a camera.

These bots navigate through a "Duckietown", a miniature town

composed of roads marked with white and yellow tape, traffic

signs, and obstacles. The Duckiebots primarily rely on simple

computer vision techniques to navigate the town, interpreting

the tape lines as roads and using colors and shapes to recognize

signs and obstacles.

On the other hand, LRIMa City is a more technologically

advanced and complex system. The self-driving cars in LRIMa

City are equipped with a Raspberry Pi 4 and a front-facing USB

camera. The LRIMa cars leverage more advanced AI models

for navigation, including a steering angle prediction model

based on NVIDIA's CNN, a traffic light detection model using

YOLOv8, and a stop sign detection model. These models

collaborate to ensure safe and efficient driving within the

miniature smart city.

In addition, LRIMa City incorporates a wider range of smart

city elements than Duckietown. While both have traffic lights,

LRIMa City also has a speedometer and a smart parking,

making it a more comprehensive testbed for exploring a variety

of autonomous vehicle scenarios.

In summary, while Duckietown focuses on simple, accessible

learning for autonomous vehicle concepts, LRIMa City steps up

the technological complexity and incorporates more elements

of a smart city to provide a more advanced testing ground for

self-driving vehicle technologies.

III. The Smart City Connectivity Solutions

Fig.2. Fog-based approach

The LRIMa City underwent two distinct life cycles, each

characterized by different approaches. The initial phase

primarily emphasized establishing connectivity with the cloud.

While this approach offered certain advantages, our team opted

for a more decentralized solution due to encountered challenges

pertaining to efficiency and reliability.

A. Cloud-based approach

 During the first life cycle, the LRIMa City placed significant

emphasis on achieving robust connectivity with the cloud. This

approach aimed to leverage cloud-based technologies and

services to enhance various aspects of urban life. However, as

the project progressed, it became apparent that certain

difficulties arose, particularly in terms of efficiency and

reliability. These challenges prompted a revaluation of the

initial approach, leading to a shift towards a more decentralized

solution. Our old infrastructure is shown in Fig.2 above except

for the fog layer.

B. Fog-based approach

 By adopting a decentralized approach, the LRIMa City project

aimed to leverage distributed technologies and infrastructure.

This paradigm shift not only mitigated the shortcomings faced

previously but also paved the way for new possibilities and

opportunities. The subsequent life cycle of the LRIMa City

represented a departure from the initial focus on cloud

connectivity, emphasizing the advantages of a decentralized

solution in terms of efficiency and reliability. A representation

of the fog-based infrastructure is shown in Fig.2 above.

IV. The Smart Components

 One key factor that differentiates the LRIMa City and makes it

unique from its competitors is the presence of multiple unique

smart components designed purposefully for the city. Some of

the components are shown in Fig.3 below.

Fig.3. Some components used in the city

A. Self-Driving Vehicle

 Our self-driving car, inspired from our previous work [8],

equipped with a Raspberry Pi 4, two DC motors, a servomotor,

a battery, and a single front-facing camera, navigates the

LRIMa City using multiple AI models that work together to

ensure safe and efficient driving within the miniature smart city.

These key models include:

1. Steering Angle Prediction Model: SAPM

 This model is inspired by and adapted from NVIDIA's end-to-

end deep learning model for self-driving cars, as described in

their paper [9] as well as a CNN for lane-recognition [10]. The

model employs a CNN to predict steering angles from raw

images captured by a camera mounted on the vehicle. By

processing these images, the model can understand the current

driving scenario and generate appropriate steering commands,

ultimately enhancing the safety and efficiency of our smart city.

 Our model, as illustrated in Fig.4 below, consists of several

layers, each designed to process input images in distinct ways.

The normalization layer scales the input image to a fixed range,

typically between -1 and 1, ensuring consistency in the data and

improving model convergence during training. Following this,

the convolutional layers perform core feature extraction by

applying filters to the input images to detect patterns such as

edges, corners, and textures. In our model, we use multiple

convolutional layers with varying filter sizes and depths to

capture both local and global features. For instance, the first

convolutional layer has 24 filters with a size of 5x5 and a stride

of 2, capturing low-level features like edges and corners.

Fig.4. Steering angle prediction model architecture

 The subsequent layers use different combinations of filter

sizes, depths, and strides to learn increasingly complex patterns

in the input images. Mathematically, the kernel convolution

operation in the convolutional layers can be represented as:

𝐺(𝑚, 𝑛) = ℎ ∗ 𝑓(𝑚, 𝑛)

= ∑

𝑗

∑

𝑘

ℎ(𝑗 ∗ 𝑘)𝑓(𝑚 − 𝑗, 𝑛 − 𝑘)

 Where 𝐺(𝑚, 𝑛) represents the output value at position (𝑚, 𝑛)

in the resulting feature map. The input feature map is denoted

as 𝑓(𝑚, 𝑛), and the filter/kernel is represented by ℎ(𝑗, 𝑘). The

inner summation is taken over the values of 𝑗 and the outer

summation is taken over the values of 𝑘. This formula computes

the convolution by sliding the filter over the input feature map

and multiplying the corresponding elements of the filter and the

local region of the input. The results of these element-wise

multiplications are summed up to obtain the output value at

each position (𝑚, 𝑛) in the feature map. The convolution

operation helps the model to learn spatial hierarchies by

combining local features in the input to extract higher-level

features in the output.

 After the convolutional layers, activation layers introduce non-

linearity to the model by applying activation functions such as

the Exponential Linear Unit (ELU) function, enabling the

model to learn complex, non-linear relationships between

inputs and outputs. Each activation layer follows a

convolutional layer, applying the ELU function element-wise

to the output of the preceding convolutional layer. The

activation function, in our case the ELU function, can be

expressed mathematically as:

𝐸𝐿𝑈(𝑥) = 𝑥, 𝑓𝑜𝑟 𝑥 ≥ 0

𝐸𝐿𝑈(𝑥) = 𝛼(𝑒𝑥 − 1), 𝑓𝑜𝑟 𝑥 < 0

 Where 𝑥 is the input to the activation function, and 𝛼 (𝑎𝑙𝑝ℎ𝑎)

is a hyperparameter (typically set to 1) that determines the slope

of the function for negative inputs. The ELU function helps the

model to mitigate the vanishing gradient problem, which can

occur when training deep neural networks, by ensuring that the

gradients do not become too small during backpropagation, thus

facilitating the learning process.

 Subsequently, a flatten layer is employed after the last

convolutional layer to convert the multi-dimensional feature

maps into a one-dimensional vector, enabling a seamless

transition from the spatial feature extraction in the

convolutional layers to the higher-level representation in the

fully connected layers.

 Finally, the fully connected layers serve as the last stage of the

model, connecting the high-level features extracted by the

previous layers to the output layer, which predicts the steering

angle. The first fully connected layer has 1164 neurons,

followed by a second fully connected layer with 100 neurons,

and a third fully connected layer with 50 neurons. The reduction

in the number of neurons across these layers enables the model

to learn a compressed representation of the input features,

focusing on the most relevant and crucial aspects for predicting

the steering angle. The last fully connected layer has a single

neuron that outputs the predicted steering angle. The

computation in the fully connected layers can be represented by

a matrix multiplication and an added bias term:

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛(𝑊 ∗ 𝑖𝑛𝑝𝑢𝑡 + 𝑏)

 In this equation, 𝑊 represents the weight matrix, 𝑖𝑛𝑝𝑢𝑡 is the

vector of input features, 𝑏 is the bias term, and 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 is

the activation function (in our case, the Exponential Linear Unit

or ELU). This equation highlights the linear combination of

input features with weights and biases, followed by the

application of the activation function to introduce non-linearity.

2. Traffic Light Recognition Model: TLRM

 Our self-driving car also relies on a Traffic Light Recognition

Model, which plays a vital role in ensuring the vehicle adheres

to traffic rules and regulations. We utilized the YOLOv8 object

detection architecture, building upon the pretrained

YOLOv8l.pt default weights to train our custom model

specifically for our miniature smart city's traffic lights.

 YOLOv8 (You Only Look Once) is a state-of-the-art object

detection framework that is known for its high accuracy and

real-time processing capabilities. The architecture divides the

input image into a grid, and each cell in the grid is responsible

for detecting objects within its boundaries. This single-shot

approach enables the model to efficiently process images and

make predictions with minimal computational resources. The

YOLOv8l.pt default weights provide a starting point for

training the model, which has already been pretrained on a

large-scale dataset, allowing for faster convergence and

improved performance on our custom traffic light dataset.

3. Stop Sign Recognition Model: SSRM

 Our stop sign detection model was sourced from an existing

GitHub repository [11]. This pre-trained model was ideal for

our purposes, as it had already been trained on various types of

stop signs and exhibited excellent performance. The model is

an XML cascade classifier, which is a popular approach for

detecting specific objects in images.

 Cascade classifiers are a type of machine learning model that

use a cascade function trained from positive and negative

images to detect objects. In this case, the cascade function is

trained to recognize stop signs. The model operates by scanning

an image in a sliding window fashion, analyzing different

regions of the image at various scales to detect stop signs. If a

stop sign is detected, the cascade classifier returns the

coordinates of the bounding box around the detected stop sign.

 By utilizing this pre-trained stop sign detection model from

the GitHub repository, we were able to save time and resources

that would have been spent on collecting and annotating a

dataset, as well as training a model from scratch. The model's

high performance and compatibility with our custom traffic

infrastructure in the LRIMa City made it an ideal choice for our

stop sign detection needs.

B. Smart Parking

 The smart parking system in LRIMa City offers a seamless

and efficient parking experience. It incorporates various

technologies to enhance convenience and optimize parking

space utilization.

Fig.5. Recognizing hand gestures to automatically open the

parking barrier

 One of the key features of the smart parking system is the

barrier control mechanism shown in Fig.5. The parking

entrance is equipped with a camera that utilizes AI-powered

MediaPipe technology [12]. This camera captures hand

gestures or specific movements made by users. By recognizing

these gestures, the system can automatically open the parking

barrier, allowing smooth entry without the need for physical

tickets or manual operation. This hands-free access control not

only enhances user convenience but also promotes contactless

interactions, which is especially important in today's context.

Fig.6. The LRIMa City’s Smart Parking

 Furthermore, the smart parking system utilizes a high-

positioned camera located in a 3D printed tower to detect

available parking spots as shown in Fig.6. This camera provides

a panoramic view of the parking area, offering a better vantage

point to detect all the parking spots. Through advanced

computer vision algorithms, the camera scans the parking area

in real-time, analyzing the occupancy of each parking space.

The system then identifies and highlights the open spots on our

web platform, providing users with an accurate and up-to-date

view of parking availability. This feature eliminates the

frustration of searching for parking spaces and allows users to

easily locate an open spot from a high-level perspective.

 By combining barrier control with real-time parking spot

detection and display, the smart parking system in LRIMa City

offers a comprehensive solution to optimize the parking

experience. It simplifies access to the parking area, minimizes

the time spent searching for parking spaces, and enhances

overall user satisfaction.

V. Training & results - AI models

 The following sub-sections will present the results of our

numerous algorithms used in the LRIMa City. Alongside the

quantitative results, we recorded a video showcasing the smart

city with examples of interactions between the self-driving

vehicle and the other smart components [13].

A. SAPM

 The training process for our Steering Angle Prediction Model

involved the use of a large dataset that was constructed by

collecting data while remotely driving the car using a controller.

During this process, images were captured, and their

corresponding steering angles were recorded, providing the

model with examples of the "appropriate way" to drive. To

enhance the robustness and diversity of our dataset and prevent

overfitting—a phenomenon where a model learns the training

data too well, reducing its ability to generalize on unseen data—

we employed data augmentation techniques, such as rotations,

translations, flipping, and adjusting brightness or contrast.

These techniques not only increased the size of our dataset but

also helped our AI model generalize better across various

driving scenarios and conditions. The augmented dataset was

then divided into training and validation sets, with the former

used to train the model and the latter to evaluate its

performance. This separation allowed us to monitor and adjust

the model to ensure it maintained good generalization

capabilities, further minimizing the risk of overfitting.

 Once the architecture of the neural network has been

established and the dataset prepared, the model is trained using

the augmented dataset of images and corresponding steering

angles collected from actual driving scenarios. The training

process involves minimizing the error between the predicted

steering angles and the actual steering angles from the training

data. To quantify this error, we use the Mean Squared Error

(MSE) loss function, which calculates the average of the

squared differences between the model's predictions and the

ground truth steering angles:

𝑀𝑆𝐸 =
1

𝑛
 ∑

𝑛

𝑖=1

(𝑌𝑖 − Ŷ𝑖)2

 Here, Ŷ𝑖 represents the predicted steering angles, 𝑌𝑖 denotes

the ground truth steering angles, and 𝑛 is the number of samples

in the dataset.

 To minimize the MSE loss, we employ the Adam (Adaptive

Moment Estimation) optimizer, which is an adaptive learning

rate optimization algorithm. Adam combines the advantages of

two other popular optimization algorithms, AdaGrad and

RMSProp, by dynamically adjusting the learning rate for each

weight and bias parameter in the model based on the first and

second moments of the gradients. This approach allows for

faster convergence and improved performance during training.

 During the training process, the model's parameters (weights

and biases) are iteratively updated based on the gradients of the

loss function with respect to the parameters. The Adam

optimizer adjusts these parameters in a way that minimizes the

MSE loss, ultimately fine-tuning the model to predict steering

angles accurately from input images. The choice of the

optimizer and loss function plays a crucial role in the model's

ability to learn the mapping between images and steering angles

effectively, ensuring the self-driving car can navigate safely and

efficiently in various driving scenarios.

Fig.7 displays the training and validation loss as a function of

the number of epochs. In the initial stages of training, we

observed a substantial decrease in both training and validation

loss within the first 10 epochs. Subsequently, the model's loss

continued to decrease, albeit at a slower rate, eventually

reaching a plateau around 55 epochs. Beyond this point, the

decrease in loss became less significant, indicating the potential

onset of overfitting if training were to continue for a few dozen

more epochs. The model converged with a validation MSE of

0.037, indicating its effectiveness in predicting steering angles.

To evaluate the robustness and generalization capabilities of

our model, we subjected it to various driving scenarios and

conditions within the LRIMa City. In most situations, the model

demonstrated strong performance, accurately predicting

steering angles under different lighting conditions and

environmental factors. However, we encountered challenges in

scenarios with sharp turns, where the field of view (FOV) of the

front-facing camera wasn't wide enough to capture both lane

lines. This observation suggests potential areas for

improvement and further model refinement.

Fig.7. Training and validation loss over time (epochs)

Fig.8. Qualitative evaluation of steering angle predictions

Fig.8 presents a qualitative evaluation of our model,

showcasing its predictions on real-world images alongside the

ground truth steering angles. In most cases, the model

accurately predicted the steering angles, allowing the self-

driving car to navigate the city efficiently. However, a few

instances revealed discrepancies between the predicted and

ground truth angles, especially in complex driving situations.

These cases provide insights into the model's limitations and

can guide future refinements to enhance its performance.

Overall, the results indicate that our Steering Angle Prediction

Model is effective in predicting steering commands for our self-

driving car in the LRIMa City. The model demonstrates good

generalization capabilities across various driving scenarios and

conditions, making it a valuable component of our miniature

smart city's autonomous driving system. Future work will focus

on improving the model's performance in challenging situations

and further optimizing its architecture for increased efficiency

and accuracy.

B. TLRM

 To create a suitable dataset for training the Traffic Light

Recognition Model, we collected images of our custom traffic

lights in various states (red, yellow, green) and under different

lighting conditions. These images were then manually

annotated, with bounding boxes drawn around each traffic light

and labeled according to its current state. This process of

annotating and labeling the images ensured that our model

could learn to accurately detect and recognize the different

traffic light states in the LRIMa City.

 After assembling the dataset, we divided it into training and

validation sets. The training set was used to fine-tune the

YOLOv8 model with our custom traffic light data, while the

validation set was employed to evaluate the model's

performance during the training process. This allowed us to

monitor the progress of our model and make any necessary

adjustments to prevent overfitting and optimize its

generalization capabilities.

 Fig.9 depicts the model's Mean Average Precision (mAP@50-

95), a widely utilized metric in object detection tasks. This

metric assesses the model's accuracy in detecting objects and

their corresponding classes across various Intersection over

Union (IoU) thresholds, ranging from 0.5 to 0.95 with a step

size of 0.05. During the training process spanning 50 epochs,

we observed that the mAP reached a plateau around the 20th

epoch, indicating that further training beyond this point would

yield diminishing returns and potentially lead to overfitting.

Notably, our model achieved an impressive mAP@50-95 score

exceeding 80%, demonstrating its robust performance in

accurately detecting and classifying traffic lights.

Fig.9. mAP@50-95 over time (epochs)

 To provide further insight into the model's performance,

Fig.10.A showcases a selection of real-life images from the

validation set containing labeled objects, representing the actual

ground truth values, allowing for a direct comparison with the

model's predictions depicted in Fig.10.B below. These images

demonstrate the model's ability to detect and classify traffic

lights under varying conditions and scenarios, revealing that the

model can accurately recognize the vast majority of images

with only a few instances of misclassification (false positives

and false negatives), especially with red and yellow lights.

Fig.10.A. Images presenting labeled traffic lights

Fig.10.B. Images presenting the model's predictions with their

corresponding confidence scores

 By analyzing these metrics and visualizations, we can

conclude that our YOLOv8 Traffic Light Recognition Model

exhibits strong performance in detecting and classifying traffic

lights within the LRIMa City. However, there may still be areas

for improvement, as highlighted by some of the graphs and

visualizations.

VI. CONCLUSION

 In conclusion, the LRIMa City project has undergone two

distinct phases, each contributing to its evolution and

development. The initial phase centered around implementing

an IoT solution utilizing a cloud-based infrastructure, while the

current phase has shifted the focus towards AI-powered

navigation and enhanced interactions between components

within the fog layer. The project has proven to be an ideal

platform for innovation, encouraging the exploration of novel

ideas and technologies.

Looking ahead, our future endeavors aim to advance the

LRIMa City even further. One key objective is the development

of a robust traffic navigation system, enabling multiple cars to

communicate and cooperate with each other seamlessly. This

collaborative approach will enhance the efficiency and safety

of the self-driving cars within our smart city, facilitating

smooth and reliable transportation in complex scenarios.

Additionally, we aspire to integrate an obstacle recognition and

avoidance model into our self-driving cars. By leveraging

cutting-edge AI algorithms, our vehicles will possess the

capability to identify and respond to potential obstacles in real-

time, ensuring enhanced safety and mitigating risks during

navigation within the LRIMa City.

The LRIMa City serves as a living laboratory for ongoing

innovation, and we are committed to continuously pushing the

boundaries of AI, IoT, and smart city technologies. Through

our ongoing research and development efforts, we strive to

create a future where autonomous systems can navigate urban

environments efficiently, safely, and seamlessly.

ACKNOWLEDGMENT

 We would like to thank FRQNT, Énergie Scolaire, PIA and

Innovations ALIVEcode inc. for financially supporting this

research. We would also like to thank Kassem Kandil,

Makhlouf Hennine, Ramy Naffati, Yao Kounakou and Francis

M. Gosselin who greatly contributed to the Smart City project.

REFERENCES

[1] Anthopoulos, Leonidas. (2017). The Rise of the Smart

City. 10.1007/978-3-319-57015-0_2.

[2] Javed, A.R.; Shahzad, F.; ur Rehman, S.; Zikria, Y.B.;

Razzak, I.; Jalil, Z.; Xu, G. Future smart cities

requirements, emerging technologies, applications,

challenges, and future aspects. Cities 2022, 129, 103794.

[3] Chen, Xieling & Xie, Haoran & Zou, Di & Hwang, Gwo-

Jen. (2020). Application and theory gaps during the rise of

Artificial Intelligence in Education. Computers and

Education: Artificial Intelligence. 1. 100002.

10.1016/j.caeai.2020.100002.

[4] J. Rezgui and E. Soldevila, "Novel IoT Development Kit

for Personalized Smart Ecosystems: Aliot," 2022 IEEE

Global Conference on Artificial Intelligence and Internet

of Things (GCAIoT), Alamein New City, Egypt, 2022, pp.

54-59, doi: 10.1109/GCAIoT57150.2022.10019206.

[5] L. Paull et al., "Duckietown: An open, inexpensive and

flexible platform for autonomy education and research,"

2017 IEEE International Conference on Robotics and

Automation (ICRA), Singapore, 2017, pp. 1497-1504, doi:

10.1109/ICRA.2017.7989179.

[6] Clarinval, A.; Simonofski, A.; Henry, J.; Vanderose, B.;

Dumas, B. Introducing the Smart City to Children: Lessons

Learned from Hands-On Workshops in Classes.

Sustainability 2023, 15, 1774. https://do

i.org/10.3390/su15031774.

[7] Ruiz Vicente, F.; Zapatera Llinares, A.; Montés Sánchez,

N. “Sustainable City”: A Steam Project Using Robotics to

Bring the City of the Future to Primary Education Students.

Sustainability 2020, 12, 9696.

https://doi.org/10.3390/su12229696.

[8] J. Rezgui, F. Jobin, S. Beaulieu and Z. Ardekani,

‘Autonomous Learning Intelligent Vehicles Engineering in

a Programming Learning Application for Youth: ALIVE

PLAY, accepted IEEE ISNCC 2021, Dubei.

[9] M. Bojarski et al., “End to End Learning for Self-Driving

Cars”, arXiv preprint, arXiv:1604.07316, 2016.

[10] K. Yassin, G. Souhir, L. Lew, J. Maher, M. Mehrez, A.

Mohamed. (2022). Deep embedded hybrid CNN-LSTM

network for lane detection on NVIDIA Jetson Xavier NX.

Knowledge-Based Systems.

10.1016/j.knosys.2021.107941.

[11] Eshgin Guluzade’s stop sign detection github repository:

https://github.com/EshginGuluzade/stop_sign_detection

[last visited 11 May 2023].

[12] Zhang, F., Bazarevsky, V., Vakunov, A., Tkachenka, A.,

Sung, G., Chang, C., & Grundmann, M. (2020).

MediaPipe Hands: On-device Real-time Hand Tracking.

ArXiv. /abs/2006.10214.

[13] The Smart City feature video:

https://www.youtube.com/watch?v=WLPV0lk77A0. [last

visited 29 May 2023].

https://doi.org/10.3390/su12229696

