
Optimizing Disease Detection Models in School Greenhouses: An

AI and IoT-Based Approach for Smart Agriculture

Jihene Rezgui*$, Léane Lafleur-Hébert*, Enric Soldevila*$, Yousra Azmour*, Matéo Tardy*

Laboratoire Recherche Informatique Maisonneuve (LRIMa) *, University of Montreal$

Montreal, Canada

jrezgui@cmaisonneuve.qc.ca

 Abstract – In recent years, the integration of Internet of

Things technologies and machine learning models in

agriculture has significantly advanced smart farming

practices. This paper presents our research on enhancing

disease detection in tomato plants within a greenhouse

environment using advanced object detection models.

Collaborating with the University of Montreal greenhouse,

we developed a realistic dataset comprising images from

both the PlantVillage repository and over 1,900 manually

labeled leaf images taken from the greenhouse. Using this

dataset, we evaluated and compared three object detection

models: Faster R-CNN, YOLOv10, and SSD, to accurately

detect and classify tomato leaf diseases. Our approach

enables us to train a model on a more realistic set of images,

facilitating automatic and earlier disease detection for

farmers. Our results show that the Faster R-CNN model

with a ResNet-50 backbone and Feature Pyramid Network

is the most effective for detecting diseased leaves, achieving

a mAP50 score of 93.13%.

Keywords: Agricultural IoT, Machine Learning, Smart

Farming, Disease Detection, Greenhouse Monitoring.

I. Introduction

 The rapid advancement of Internet of Things (IoT)

technologies [1], coupled with machine learning (ML)

methodologies, has ushered in a new era of smart agriculture,

where precision farming techniques enhance productivity and

sustainability [2]. Smart farming systems leverage IoT sensors

and data-driven models to monitor crop health, optimize

resource usage, and automate agricultural processes. Among

the most critical applications of these technologies is the early

detection and management of plant diseases, which can

significantly impact crop yields and quality [3]. Tomato plants,

a staple in global agriculture, are particularly vulnerable to a

variety of diseases that can rapidly spread in greenhouse

environments. Traditional disease detection methods rely on

manual inspection, which is time-consuming, labor-intensive,

and prone to human error. This highlights the need for

automated, reliable, and efficient solutions to identify and

manage plant diseases in real-time. In our previous work [4],
we explored the integration of IoT and ML technologies in

smart agriculture, focusing on the detection of plant diseases in

a real greenhouse environment. We augmented the Plant

Village dataset from Kaggle [5] and compared the accuracy of

YOLOv8 and Faster-RCNN models. This paper builds on that

research by further enhancing the dataset with new images,

benchmarking additional object detection models, and adding

disease classification capabilities. We focused on three state-

of-the-art object detection models: Faster R-CNN, YOLOv10,

and SSD, each offering unique advantages for detecting plant

diseases. Our primary goal is to determine the most effective

model for this specific application, considering factors such as

detection accuracy, training speed, prediction speed, and the

ability to handle the complex and varied conditions found in a

greenhouse. Our research was conducted in collaboration with

the Sustainability Unit of the University of Montreal (UdeM),

where we utilized their industrial school greenhouse, referred

to as the UdeM greenhouse in this paper, to collect a robust

dataset of tomato leaves, both healthy and diseased (see Fig. 1),

combined with images from the PlantVillage dataset.

Fig.1. School UdeM greenhouse

 Our contributions in this paper can be summarized as

follows: (1) we selected over 8,500 images from the

PlantVillage dataset and categorized them using Roboflow; (2)

we framed and labeled 1,900 tomato leaves with their diseases

from approximately 50 images taken in the UdeM greenhouse;

(3) we augmented our dataset using various transformations;

(4) we trained and benchmarked three object detection models

on our dataset; (5) we fine-tuned the hyperparameters of these

models to compare their performances; and (6) we discussed

the results of the three models through extensive simulations.

 Outline: Section II gives a brief overview of similar research

done in the field of tomato leaf disease detection. Section III

presents the transformation and preparation of the data used to

train the models. Section IV explains our choices of object

detection models. Section V shows our results. Finally, section

VI concludes the paper.

II. Related work

 Numerous researchers have presented their solutions for

optimizing disease detection models in tomatoes [6-9].

Notably, studies involving Faster R-CNN have explored

various Convolutional Neural Network (CNN) models, such as

Region-based CNN (R-CNN) and Fast R-CNN, to detect

diseases on tomato leaves using the PlantVillage dataset [7].

Although the PlantVillage dataset is diverse, it does not

accurately represent real-life agricultural conditions due to its

lack of comprehensive environmental data. To address this, we

collected and labeled images from the UdeM greenhouse to

augment the PlantVillage dataset. For SSD, a notable approach

focuses on detecting tomato leaf defects by categorizing leaves

into two broad classes: "healthy" and "unhealthy," with the

latter further divided into "Bacterial Spot" and "Yellow Leaf

Curl Virus." This work [8] utilizes the MobileNetV2 backbone

of SSD for model development. While effective, this method's

limited disease categories do not fully capture the diversity of

real-life agricultural conditions. In contrast, our dataset

includes ten distinct categories—"Healthy Tomato,"

"EarlyBlight," "BacterialSpot," "LeafMold," "Mosaic Virus,"

"SeptoriaLeafSpot," "SpiderMites," "TargetSpot,"

"TomatoLateBlight," and "YellowLeafCurlVirus"—making

our system more applicable to real-world scenarios.

 To the best of our knowledge, there are no papers using

versions of YOLO more recent than YOLOv8 [9] for tomato

leaf disease detection. Therefore, we are among the first to

experiment with YOLOv10 in this context.

III. Case study: UdeM School Greenhouse

 We conducted our research in an industrial school greenhouse.

This section highlights the key differences to our previous work

[4], focusing on the improvements and refinements we have

made. The section is organized into two main subsections:

(1) Dataset preparation subsection covers the methods and

processes involved in gathering the data for our dataset, which

is used to train the models later. It describes the original

structure of the dataset, the modifications made to its structure,

and the image transformations applied to enhance it.

(2) The models used subsection briefly outlines the different

models employed in our approach, emphasizing the changes we

made compared to previous work to better address our specific

needs. It discusses these modifications in more detail, including

the theoretical aspects, in the next section.

A. Dataset preparation
 Similar to our previous work, the initial foundation of our

dataset is composed of images from the Kaggle repository

named PlantVillage. We began by selecting 10 directories from

this repository, which include various images of tomato leaves,

either healthy or exhibiting one of the 9 different types of

diseases. Previously, our dataset was categorized into only

three groups: tomato leaf, sick tomato leaf, and other leaf. In

this new version, we have removed the "other leaf" category

and expanded the dataset into 10 specific categories. This

allows the models to not only identify diseased leaves but also

determine the type of disease affecting them. The categories

now include healthy tomato leaf, leaf mold, early blight,

septoria leaf spot, bacterial spot, spider mites, mosaic virus,

yellow leaf curl virus, target spot, and late blight.

 However, the images of PlantVillage feature a single leaf per

image, which is not representative of a greenhouse environment

where tomato plants often have clusters of leaves grouped

together and overlapping. To address this issue and make the

dataset more relevant to our needs, we augmented it with

images taken directly from the UdeM greenhouse, manually

drawing bounding boxes around the tomato leaves and labeling

them according to their respective disease categories. This

adjustment made the dataset reflect the conditions found in a

greenhouse, providing a more comprehensive and realistic

training set for our models. At the time of this paper, the

distribution of images from each source is illustrated in the

accompanying graphs. The first graph (Fig.2) compares the

quantity of diseased leaves between the PlantVillage dataset,

and the images collected from the UdeM greenhouse. The

second graph (Fig. 3) represents the quantity and percentage of

leaves from each source, showing how the leaf categories are

distributed between the PlantVillage dataset and the UdeM

greenhouse images.

Fig.2. Number of Diseased Leaves from PlantVillage and UdeM

Greenhouse

 We acknowledge that there is currently an imbalance in the

dataset. To address this imbalance and enhance the diversity of

the dataset, we will continuously add more images from the

UdeM greenhouse using a Raspberry Pi camera. This ongoing

effort aims to create a more balanced and representative dataset,

improving the robustness and accuracy of our models. We

utilized a comprehensive set of image transformations to

augment our dataset, enhancing its quality, diversity and

realism. The transformations applied are detailed in Table 1.

below.

Flip horizontal and vertical flip

Crop Minimum zoom of 0% and maximum zoom of

24%

Rotation Between -30° and +30°

Shear ±27° horizontal and ±29° vertical

Brightness Adjustments between -36% and +0%

Blur Up to 1.2 pixels

Mosaic Applied to combine multiple images into one

Table 1. Transformations applied to dataset

 Also, for each training image, three additional images were

generated by randomly applying various transformations. This

approach increases the dataset size. Finally, the dataset was

divided into three subsets for training, train (82%), test (8%),

valid (8%), as illustrated in Fig. 4. To maintain consistency and

ensure comparability with our previous research, we aimed to

keep the dataset split and structure as similar as possible.

Fig.3. Leaves Distribution:

PlantVillage and UdeM

Greenhouse

Fig.4. Distribution of Training,

Validation and Test Data Splits

B. The Models
 For the object detection models used in our study, we decided

to implement 3 different models to determine which one would

be most beneficial in a real greenhouse context. These models

will be evaluated and compared based on several criteria,

including their ability to accurately identify smaller objects,

detection speed, and overall precision. We chose these criteria

because, in a greenhouse environment, it is crucial for the

model to accurately detect small objects like leaves, which can

vary significantly in size.

 The first model will be the same as in [4], which is Faster R-

CNN with ResNet as the backbone. In this study, we continue

to use ResNet-50 with a Feature Pyramid Network (FPN) as a

reference point, like the work in [4], but we also introduce and

compare two alternative backbones: ResNet-101 and ResNet-

152, both without FPN. We decided to compare these models

to determine which backbone would provide better precision

for our research moving forward.

 The second model will be YOLOv10, an upgraded version of

YOLOv8. This newer version shows improvements in

detecting smaller objects due to key advancements, such as dual

label assignments [10] that boost accuracy and enhanced

downsampling techniques that preserve fine details.

 The third model in our study, is SSD (Single Shot Detector),

specifically using two variants: ssd300_vgg16 and

ssdlite320_mobilenet_v3_large. We selected these SSD models

to explore how well they balance speed and accuracy,

especially in detecting the smaller, more detailed features of

tomato leaves that are crucial for identifying diseases.

IV. Our Greenhouse AI models

A. Faster-RCNN

 The first model is Faster R-CNN (Region-based Convolutional

Neural Network). In our previous work, we used Faster R-CNN

with a ResNet-50 version 2 backbone combined with a Feature

Pyramid Network (FPN) to achieve high precision in object

detection. To explore whether an alternative backbone could be

better for the model's precision, we decided to evaluate ResNet-

101 and ResNet-152 backbones, this time without FPN, and

compare them against the ResNet-50 with FPN used in our

earlier study. The ResNet-50 with FPN architecture is known

for balancing accuracy and computational efficiency by

leveraging multi-scale feature maps. In contrast, ResNet-101

and ResNet-152 offer deeper networks compared to ResNet-50,

with 101 and 152 layers, respectively, compared to 50 layers.

For a fair comparison, all three models were trained on the same

dataset, with identical parameters: 25 epochs, a batch size of 8,

and an image size of 128.

 In the analysis of the models' performance, we observe two key

metrics: mAP50 and mAP50:90. The first metric, mAP50,

reflects the accuracy of object detection at an IoU threshold of

50%, while the second, mAP50:95, measures accuracy across a

range of IoU thresholds from 50% to 95%. The ResNet-50 with

FPN model demonstrates the smallest gap between these two

metrics, suggesting it maintains consistent performance in both

detection accuracy and localization precision. This indicates

that the ResNet-50 with FPN model is particularly effective in

balancing both accurate object detection and precise

localization. Conversely, models using ResNet-101 and

ResNet-152 show a more pronounced gap between the metrics.

This gap implies that, although these models may achieve

higher overall detection accuracy, their ability to perform well

at stricter localization thresholds is less robust compared to

ResNet-50 with FPN.

 Having concluded that ResNet-50 with FPN is the most

suitable model for our study, we will now train it to use

different parameters from those used to compare it with

ResNet-101 and ResNet-152. This will allow us to optimize its

performance and effectively compare it with the other two

models, YOLOv10 and SSD. For the result section we used a

batch size of 6, an image size of 640, and 50 epochs. However,

the training process stopped early at epoch 17 due to early

stopping, which was activated after the validation performance

failed to improve for 10 consecutive epochs.

B. YOLOv10

The second model is YOLO (You Only Look Once). In our

previous research paper, we used YOLOv8. Since the release

of that paper, researchers at Tsinghua University built

YOLOv10 using the Ultralystics Python package, the same one

as YOLOv8.

Fig.5. Example of NMS technique

There are a few differences between the version 8 and version

10 that made us choose version 10 for this research. For

example, YOLOv8 uses Non-Maximum Suppression (NMS)

(Fig.5) as a post-processing step to remove duplicate bounding

boxes around detected objects. This ensures that each object is

represented by only one bounding box and not multiple.

However, the use of NMS adds computational cost during the

training and inference. During training in YOLOv8, for each

object in the image, there’s multiple potential bounding boxes

assigned to it, this is called the one-to-many assignment

strategy. Then once the model is making a prediction, they use

NMS to filter out all the redundant bounding boxes, so that the

most accurate one is the one kept. Furthermore, YOLOv10

introduces a new approach that eliminates the need for NMS,

hence the name "NMS-free." This is achieved through a new

training strategy that employs dual label assignments and a

consistent matching metric.

 The introduction of dual label assignments in YOLOv10

combines the best of both one-to-many and one-to-one

matching during training, as illustrated in this schema. The first

head is the one-to-many assignment is the same as the one used

in YOLOv8, making multiple bounding boxes. The second

head is the one-to-one on the contrary, making one box per

object. Both heads contribute to the model training and to make

sure that they are harmonized YOLOv10 uses a uniform

matching metric (𝑚(𝛼, 𝛽) = 𝑠 ⋅ 𝑝𝛼 ⋅ 𝐼𝑜𝑈(𝑏̂ ⋅ 𝑏)𝛽) [10]. When

it's time to make a prediction, only the one-to-one will be used

to make it only one box, no need for the post-processing NMS.

 Another example of change is the downsampling technique.

Downsampling refers to the process of reducing the spatial

dimensions of feature maps in a convolutional neural network

while also adjusting the number of channels. In YOLOv8, this

is achieved using standard 3x3 convolutions with a stride of 2,

which simultaneously reduces the height and width of the

feature maps by half and increases the number of channels. This

approach, while effective, performs both spatial reduction and

channel transformation in a single step, which can be

computationally intensive.

 In contrast, YOLOv10 introduces a more efficient method

known as spatial-channel decoupled downsampling. This

technique separates the spatial and channel operations into two

distinct steps. First, it uses a pointwise convolution (1x1) to

handle channel transformations without affecting the spatial

dimensions. Then, a depthwise convolution (3x3 with stride 2)

is employed to reduce the spatial dimensions. This separation

allows for more efficient computation and better preservation

of fine details in the feature maps. For our case, this means

YOLOv10 can more effectively detect smaller objects, such as

leaves in a greenhouse, by retaining crucial details during the

downsampling process.

 For the result section we use the model YOLOv10-B. We

train this model with a batch size of 16, 50 epochs and 640 as

the image size.

C. SSD (Single Shot Detector)

 The SSD (Single Shot Detector) is our newly added model to

our research. The SSD adds valuable diversity to our study on

tomato leaf disease detection. SSD is renowned for its real-time

detection capabilities, which makes it particularly

advantageous for applications requiring swift and efficient

processing. This model stands out for its ability to perform

object localization and classification in a single pass through

the network, similar to YOLO [11]. This approach significantly

reduces computational complexity compared to two-stage

detectors like Faster R-CNN.

 In the SSD architecture, two main components work together

to perform object detection. First is the backbone, it’s a pre-

trained convolutional neural network, such as MobileNetV3 in

ssdlite320_mobilenet_v3_large or VGG-16 in ssd300_vgg16,

that serves as a feature extractor. It processes the input image

and generates feature maps at various levels of detail. These

feature maps capture important information about the objects in

the image, such as their shapes, textures, and locations.

 Second is the SSD head that is attached to the feature maps

produced by the backbone. It consists of additional

convolutional layers designed to predict the presence of objects

at different scales. The SSD head generates bounding box

coordinates and class scores for each object directly from these

feature maps. By applying this head to multiple feature maps,

SSD can detect objects of various sizes and positions within a

single forward pass through the network. Fig.6 displays the first

few layers (white boxes) that are the backbone and the last few

layers (blue boxes) that are the SSD head.

Fig.6. Modified image of a design of a convolutional neural

network integrated with an SSD detector. [11]

 While the combination of the backbone and SSD head allows

for efficient object detection, detecting small objects like

tomato leaves presents unique challenges. The smaller the

object, the more grid cells are needed to effectively detect it.

This is because smaller objects occupy less space in the image,

so a finer grid allows the model to capture more detailed

information and better localize these small objects. In SSD, this

is achieved by using higher-resolution feature maps that

provide more grid cells, enabling the detection of smaller

objects like individual tomato leaves. Therefore, in the context

of the UdeM greenhouse we have to use higher-resolution

feature maps concerning the tomato leaves.

 We used a default configuration for bounding boxes, which are

also known as anchor boxes. These default boxes are

predefined at multiple scales and aspect ratios for each feature

map cell in the SSD architecture. They are crucial for the SSD

model to predict object locations and classes efficiently.

 In our study, we employed two variants of the SSD model to

compare their performance in detecting diseases in tomato

leaves: ssd300_vgg16 and ssdlite320_mobilenet_v3_large.

The first model, ssd300_vgg16, utilizes the VGG-16 backbone,

known for its simplicity and effectiveness in feature extraction.

This model is designed to provide a good balance between

detection accuracy and computational efficiency, making it

suitable for scenarios where moderate speed and high precision

are required.

Fig.7. The Training loss and the mAP50 of

ssdlite320_mobilenet_v3_large over the epochs.

On the other hand, we also used

ssdlite320_mobilenet_v3_large, which incorporates the

MobileNetV3 backbone [12]. This variant is optimized for

mobile and embedded devices, offering a lighter, faster

alternative without compromising too much on accuracy. The

ssdlite320_mobilenet_v3_large model is particularly

advantageous in real-time applications, where rapid detection

is crucial, such as in a field setting where quick identification

of diseased leaves can significantly impact crop management

decisions.

By comparing these two models, we aimed to evaluate how

different backbones and SSD configurations affect the

detection of small objects, like tomato leaves, and determine

which approach offers the best trade-off between speed and

accuracy for our specific application.

For a fair comparison, the two models were trained on the same

dataset, with identical parameters: 25 epochs, a batch size of

32, and an image size of 640.

 We chose ssdlite320_mobilenet_v3_large for its high mAP50

(0.8493) and low training loss (0.4619) as shown in Fig.7. In

comparison to the ssd300_vgg16 where its mAP50 was 0.7438

and its training loss was 2.3897. Furthermore, Fig.8 shows a

sudden drop in the mAP50 going from 0.70 to 0.10 and a

sudden gain in the training loss indicating that the

ssd300_vgg16 has some stability issues during training when

exposed to randomness caused by our data shuffling which adds

to our choice of not picking the ssd300_vgg16 model.

Fig.8. The training loss and the mAP50 over the epochs of

ssd300_vgg16.

V. Simulations Results

 The following subsections will present the results of our

research for the 3 models.

A. Faster R-CNN

 For the model using ResNet-50 with FPN, the average mAP50

score across all the epochs came to 92.13%, and the average

mAP came to 90.83%. The graph (Fig.9) below illustrates the

different components of the training loss over the epochs.

Fig.9 Training Loss components throughout the epochs for Faster-

RCNN

 For this model the time of training is about 9 hours and 30

minutes and for prediction of one image it's between 250 and

350 milliseconds on average.

B. YOLOv10

 For the model using YOLOv10-B, the average mAP50 score

across all the epochs came to 91.68%. The graph (Fig.10)

below illustrates the different components of the training loss

over the epochs.

Fig.10. Training Metrics throughout the epochs for YOLOv10

 For this model the time of training is about 7 hours and 45

minutes and for prediction of one image it's between 750 and

850 milliseconds on average.

C. SSD

 For the model using ssdlite320_mobilenet_v3_large, the

average mAP50 reached to 84.93%. The graph in Fig.11

illustrates the different components of the training loss over the

epochs.

Fig.11 Training metrics throughout the epochs for the

ssdlite320_mobilenet_v3_large model.

 For this model, the training time is approximately 1 hour and

3 minutes, and the prediction time for a single image is between

291 and 350 milliseconds on average.

D. Comparison of all the models

1. Metrics Comparison

 The following Table 2. show the comparison of all the relevant

metrics generated from the training of all three models. As we

can see, although Faster-RCNN takes the longest to train, it is

overall the highest performing model that we trained with a

map50 score of 92.13% and prediction time varying between

250 and 350 ms.

 Moreover, our Faster-RCNN achieved an average mAP of

90.83% compared to the average mAP of 60% of our last

article, representing a significant improvement of 30.83%.

Metric Faster-RCNN YOLOv10 SSD

map50 score 92.13% 91.68% 84.93%

Training time 9h30 7h45 1h03

Prediction time (ms) 250-350 750-850 291-350

Table 2. Metrics comparison between all three models.

2. Practical tests

 To further test the models, we selected two different images

from the greenhouse (one with larger leaves and one with

smaller leaves) that the models had never seen before, to

evaluate which model detects the most diseased leaves. Table.

3 below compares the number of leaves detected and

individually framed by each model.

 Faster R-CNN YOLOv10 SSD

Image with

smaller leaves

8/15 sick

leaves

(53%)

0/15 sick

leaves

(0%)

0/15 sick

leaves

(0%)

Image with

bigger leaves

11/20 sick

leaves

(55%)

3/20 sick

leaves

(15%)

5/20 sick

leaves

(25%)

Table 3. Number of sick leaves detected by each model.

 From our results, we can once again conclude that Faster R-

CNN is the best-performing model. It consistently detected and

accurately framed individual leaves, rather than grouping them

into large bounding boxes. Notably, in the case of images with

smaller leaves, Faster R-CNN managed to frame the leaves

separately but incorrectly identified the disease. In contrast, the

SSD model more accurately identified the disease but framed

the entire cluster of leaves rather than individual ones.

3. Analysis discussion

 While our approach has shown promise, several areas for

improvement have been identified, particularly related to the

challenges of handling large clusters of tomato leaves and

managing the surrounding noise in images. One significant

challenge is the presence of dense clusters of tomato leaves in

greenhouse settings, which complicates the accurate

identification and separation of individual leaves. To address

these challenges, we propose the following improvements:

(1) Expanding the Dataset: To enhance the model's robustness

and accuracy, like we mentioned earlier, we will continue to

augment our dataset with additional images captured directly

from the UdeM greenhouse. This will better represent the real

conditions where the model will be deployed, leading to a more

balanced and accurate training set.

(2) Improving Annotation Consistency: We previously

employed both polygon and bounding box annotations for

labeling leaves in our images in Roboflow. However, moving

forward, we will only use bounding box annotations since it

offers a significant advantage by capturing not just the leaf but

also its surrounding context, including any background noise.

This approach is crucial for preserving the natural variations

around the leaf, which is essential for the model's ability to

generalize and perform effectively in a greenhouse

environment. In contrast, polygon annotations tend to "extract"

the object from the image, isolating it and removing the

surrounding context by placing it against a black background,

similar to the dataset from PlantVillage, where each image

contains a single leaf against a plain background. By using

bounding boxes, we retain the complete image and simply

highlight each leaf, ensuring that the model is trained to

recognize leaves in realistic conditions.

VI. CONCLUSION

 This study has highlighted the challenges and potential of

using object detection models like SSD, Faster R-CNN, and

YOLOv10 for disease detection in greenhouse environments.

Our results show that while each model has its strengths,

handling dense clusters of tomato leaves and managing

surrounding noise remain significant challenges. To address

these issues, we propose expanding the dataset with additional

images from the UdeM school greenhouse and improving

annotation consistency by focusing on bounding box

annotations. These steps are essential for enhancing the models'

robustness and accuracy in real-world applications.

 Moving forward, we plan to deploy the most promising model

in a real-time monitoring system within the school greenhouse.

This system will leverage the model's capabilities to provide

proactive disease management. Additionally, implementing a

closed-loop feedback mechanism and cloud-based alerting

functionalities will ensure continuous model improvement and

effective disease detection in real-time, thereby providing

greenhouse operators with timely and actionable insights.

ACKNOWLEDGMENT

 We would like to thank Innovations ALIVEcode inc. for

financially supporting this research. We would also like to

thank Hannick Nadine Anoutsa Zangue, Alexandre Beaudoin

and Claude Dagenais who manage the School Greenhouse

project of the University of Montreal.

REFERENCES

[1] K. B. A. Bakar, F. T. Zuhra, B. Isyaku and S. B. Sulaiman, "A

Review on the Immediate Advancement of the Internet of Things

in Wireless Telecommunications," in IEEE Access, vol. 11, pp.

21020-21048, 2023, doi: 10.1109/ACCESS.2023.3250466.

[2] Bongiovanni, R., Lowenberg-Deboer, J. Precision Agriculture

and Sustainability. Precision Agriculture 5, 359–387 (2004).

https://doi.org/10.1023/B:PRAG.0000040806.39604.aa

[3] Martinelli, F., Scalenghe, R., Davino, S. et al. Advanced methods

of plant disease detection. A review. Agron. Sustain. Dev. 35, 1–

25 (2015). https://doi.org/10.1007/s13593-014-0246-1

[4] Y. Lakhdari, E. Soldevila and J. Rezgui,, “Detection of plant

diseases in an industrial greenhouse: Development, Validation &

Exploitation”, accepted IEEE ISNCC 2023, Qatar.

[5] PlantVillage Kaggle repository

https://www.kaggle.com/datasets/abdallahalidev/plantvillage-

dataset [last visited 21 August 2024]

[6] Sandro A. Magalhães, Luís Castro, Germano Moreira, Filipe N.

Santos, mário Cunha, Jorge Dias, António P. Moreira. (2021).

Evaluating the Single-Shot MultiBox Detector and YOLO Deep

Learning Models for the Detection of Tomatoes in a Greenhouse.

https://doi.org/10.3390/s21103569

[7] Alruwaili, M.; Siddiqi, M.H.; Khan, A.; Azad, M.; Khan, A.;

Alanazi, S. RTF-RCNN. (2022). An Architecture for Real-Time

Tomato Plant Leaf Diseases Detection in Video Streaming

Using Faster-RCNN.

https://doi.org/10.3390/bioengineering9100565

[8] Brucal, S., De Jesus, L., De Los Santos, J., Mendoza, M., Harion,

K., Reyes, G., Nevalasca, D., & Reyes, J. (2023). Development

of Tomato Leaf Disease Detection using Single Shot Detector

(SSD) Mobilenet V2. International Journal Of Computing

Sciences Research, 7, 1857-1869.

www.stepacademic.net/ijcsr/article/view/405

[9] Zhong, Y. (2024). Tomato Leaf Disease Identification Based on

Yolov8. International Journal of Computer Science and

Information Technology, 3(2), 265-276.

https://doi.org/10.62051/ijcsit.v3n2.30

[10] Ao Wang, Hui Chen, et al. (2024). YOLOv10: Real-Time End-

to-End Object Detection.

https://doi.org/10.48550/arXiv.2405.14458

[11] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian

Szegedy, Scott Reed, Cheng-Yang Fu (2016). SSD: Single Shot

MultiBox Detector. https://doi.org/10.48550/arXiv.1512.02325

[12] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen,

Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu, Ruoming

Pang, Vijay Vasudevan, Quoc V. Le, Hartwig Adam. (2019).

“Searching for MobileNetV3”.

https://doi.org/10.48550/arXiv.1905.02244

