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  Abstract – In recent years, the integration of Internet of 

Things technologies and machine learning models in 

agriculture has significantly advanced smart farming 

practices. This paper presents our research on enhancing 

disease detection in tomato plants within a greenhouse 

environment using advanced object detection models. 

Collaborating with the University of Montreal greenhouse, 

we developed a realistic dataset comprising images from 

both the PlantVillage repository and over 1,900 manually 

labeled leaf images taken from the greenhouse. Using this 

dataset, we evaluated and compared three object detection 

models: Faster R-CNN, YOLOv10, and SSD, to accurately 

detect and classify tomato leaf diseases. Our approach 

enables us to train a model on a more realistic set of images, 

facilitating automatic and earlier disease detection for 

farmers. Our results show that the Faster R-CNN model 

with a ResNet-50 backbone and Feature Pyramid Network 

is the most effective for detecting diseased leaves, achieving 

a mAP50 score of 93.13%. 
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Farming, Disease Detection, Greenhouse Monitoring. 

 

I. Introduction 

 The rapid advancement of Internet of Things (IoT) 

technologies [1], coupled with machine learning (ML) 

methodologies, has ushered in a new era of smart agriculture, 

where precision farming techniques enhance productivity and 

sustainability [2]. Smart farming systems leverage IoT sensors 

and data-driven models to monitor crop health, optimize 

resource usage, and automate agricultural processes. Among 

the most critical applications of these technologies is the early 

detection and management of plant diseases, which can 

significantly impact crop yields and quality [3].  Tomato plants, 

a staple in global agriculture, are particularly vulnerable to a 

variety of diseases that can rapidly spread in greenhouse 

environments. Traditional disease detection methods rely on 

manual inspection, which is time-consuming, labor-intensive, 

and prone to human error. This highlights the need for 

automated, reliable, and efficient solutions to identify and 

manage plant diseases in real-time. In our previous work [4], 
we explored the integration of IoT and ML technologies in 

smart agriculture, focusing on the detection of plant diseases in 

a real greenhouse environment. We augmented the Plant 

Village dataset from Kaggle [5] and compared the accuracy of 

YOLOv8 and Faster-RCNN models.   This paper builds on that 

research by further enhancing the dataset with new images, 

benchmarking additional object detection models, and adding 

disease classification capabilities. We focused on three state-

of-the-art object detection models: Faster R-CNN, YOLOv10, 

and SSD, each offering unique advantages for detecting plant 

diseases. Our primary goal is to determine the most effective 

model for this specific application, considering factors such as 

detection accuracy, training speed, prediction speed, and the 

ability to handle the complex and varied conditions found in a 

greenhouse. Our research was conducted in collaboration with 

the Sustainability Unit of the University of Montreal (UdeM), 

where we utilized their industrial school greenhouse, referred 

to as the UdeM greenhouse in this paper, to collect a robust 

dataset of tomato leaves, both healthy and diseased (see Fig. 1), 

combined with images from the PlantVillage dataset.  

 

 

Fig.1. School UdeM greenhouse  

 Our contributions in this paper can be summarized as 

follows: (1) we selected over 8,500 images from the 

PlantVillage dataset and categorized them using Roboflow; (2) 

we framed and labeled 1,900 tomato leaves with their diseases 

from approximately 50 images taken in the UdeM greenhouse; 

(3) we augmented our dataset using various transformations; 

(4) we trained and benchmarked three object detection models 

on our dataset; (5) we fine-tuned the hyperparameters of these 

models to compare their performances; and (6) we discussed 

the results of the three models through extensive simulations. 

  Outline: Section II gives a brief overview of similar research 

done in the field of tomato leaf disease detection. Section III 

presents the transformation and preparation of the data used to 

train the models. Section IV explains our choices of object 

detection models. Section V shows our results. Finally, section 

VI concludes the paper. 

  

II. Related work 

 Numerous researchers have presented their solutions for 

optimizing disease detection models in tomatoes [6-9]. 

Notably, studies involving Faster R-CNN have explored 

various Convolutional Neural Network (CNN) models, such as 



Region-based CNN (R-CNN) and Fast R-CNN, to detect 

diseases on tomato leaves using the PlantVillage dataset [7]. 

Although the PlantVillage dataset is diverse, it does not 

accurately represent real-life agricultural conditions due to its 

lack of comprehensive environmental data. To address this, we 

collected and labeled images from the UdeM greenhouse to 

augment the PlantVillage dataset.  For SSD, a notable approach 

focuses on detecting tomato leaf defects by categorizing leaves 

into two broad classes: "healthy" and "unhealthy," with the 

latter further divided into "Bacterial Spot" and "Yellow Leaf 

Curl Virus." This work [8] utilizes the MobileNetV2 backbone 

of SSD for model development. While effective, this method's 

limited disease categories do not fully capture the diversity of 

real-life agricultural conditions. In contrast, our dataset 

includes ten distinct categories—"Healthy Tomato," 

"EarlyBlight," "BacterialSpot," "LeafMold," "Mosaic Virus," 

"SeptoriaLeafSpot," "SpiderMites," "TargetSpot," 

"TomatoLateBlight," and "YellowLeafCurlVirus"—making 

our system more applicable to real-world scenarios.  

 To the best of our knowledge, there are no papers using 

versions of YOLO more recent than YOLOv8 [9] for tomato 

leaf disease detection. Therefore, we are among the first to 

experiment with YOLOv10 in this context. 

 

III. Case study: UdeM School Greenhouse  

 We conducted our research in an industrial school greenhouse. 

This section highlights the key differences to our previous work 

[4], focusing on the improvements and refinements we have 

made. The section is organized into two main subsections: 

(1) Dataset preparation subsection covers the methods and 

processes involved in gathering the data for our dataset, which 

is used to train the models later. It describes the original 

structure of the dataset, the modifications made to its structure, 

and the image transformations applied to enhance it. 

(2) The models used subsection briefly outlines the different 

models employed in our approach, emphasizing the changes we 

made compared to previous work to better address our specific 

needs. It discusses these modifications in more detail, including 

the theoretical aspects, in the next section. 

A. Dataset preparation 
  Similar to our previous work, the initial foundation of our 

dataset is composed of images from the Kaggle repository 

named PlantVillage. We began by selecting 10 directories from 

this repository, which include various images of tomato leaves, 

either healthy or exhibiting one of the 9 different types of 

diseases. Previously, our dataset was categorized into only 

three groups: tomato leaf, sick tomato leaf, and other leaf. In 

this new version, we have removed the "other leaf" category 

and expanded the dataset into 10 specific categories. This 

allows the models to not only identify diseased leaves but also 

determine the type of disease affecting them. The categories 

now include healthy tomato leaf, leaf mold, early blight, 

septoria leaf spot, bacterial spot, spider mites, mosaic virus, 

yellow leaf curl virus, target spot, and late blight. 

  However, the images of PlantVillage feature a single leaf per 

image, which is not representative of a greenhouse environment 

where tomato plants often have clusters of leaves grouped 

together and overlapping. To address this issue and make the 

dataset more relevant to our needs, we augmented it with 

images taken directly from the UdeM greenhouse, manually 

drawing bounding boxes around the tomato leaves and labeling 

them according to their respective disease categories. This 

adjustment made the dataset reflect the conditions found in a 

greenhouse, providing a more comprehensive and realistic 

training set for our models. At the time of this paper, the 

distribution of images from each source is illustrated in the 

accompanying graphs. The first graph (Fig.2) compares the 

quantity of diseased leaves between the PlantVillage dataset, 

and the images collected from the UdeM greenhouse. The 

second graph (Fig. 3) represents the quantity and percentage of 

leaves from each source, showing how the leaf categories are 

distributed between the PlantVillage dataset and the UdeM 

greenhouse images. 

 

Fig.2. Number of Diseased Leaves from PlantVillage and UdeM 

Greenhouse 

 We acknowledge that there is currently an imbalance in the 

dataset. To address this imbalance and enhance the diversity of 

the dataset, we will continuously add more images from the 

UdeM greenhouse using a Raspberry Pi camera. This ongoing 

effort aims to create a more balanced and representative dataset, 

improving the robustness and accuracy of our models. We 

utilized a comprehensive set of image transformations to 

augment our dataset, enhancing its quality, diversity and 

realism. The transformations applied are detailed in Table 1. 

below. 

Flip horizontal and vertical flip 

Crop Minimum zoom of 0% and maximum zoom of 

24% 

Rotation Between -30° and +30° 

Shear ±27° horizontal and ±29° vertical 

Brightness Adjustments between -36% and +0% 

Blur Up to 1.2 pixels 

Mosaic Applied to combine multiple images into one 

Table 1. Transformations applied to dataset 

 Also, for each training image, three additional images were 

generated by randomly applying various transformations. This 

approach increases the dataset size. Finally, the dataset was 

divided into three subsets for training, train (82%), test (8%), 

valid (8%), as illustrated in Fig. 4. To maintain consistency and 

ensure comparability with our previous research, we aimed to 

keep the dataset split and structure as similar as possible. 



  
Fig.3. Leaves Distribution: 

PlantVillage and UdeM 

Greenhouse 

Fig.4. Distribution of Training, 

Validation and Test Data Splits 

 

B. The Models 
 For the object detection models used in our study, we decided 

to implement 3 different models to determine which one would 

be most beneficial in a real greenhouse context. These models 

will be evaluated and compared based on several criteria, 

including their ability to accurately identify smaller objects, 

detection speed, and overall precision. We chose these criteria 

because, in a greenhouse environment, it is crucial for the 

model to accurately detect small objects like leaves, which can 

vary significantly in size.  

  The first model will be the same as in [4], which is Faster R-

CNN with ResNet as the backbone. In this study, we continue 

to use ResNet-50 with a Feature Pyramid Network (FPN) as a 

reference point, like the work in [4], but we also introduce and 

compare two alternative backbones: ResNet-101 and ResNet-

152, both without FPN. We decided to compare these models 

to determine which backbone would provide better precision 

for our research moving forward. 

   The second model will be YOLOv10, an upgraded version of 

YOLOv8. This newer version shows improvements in 

detecting smaller objects due to key advancements, such as dual 

label assignments [10] that boost accuracy and enhanced 

downsampling techniques that preserve fine details. 

   The third model in our study, is SSD (Single Shot Detector), 

specifically using two variants: ssd300_vgg16 and 

ssdlite320_mobilenet_v3_large. We selected these SSD models 

to explore how well they balance speed and accuracy, 

especially in detecting the smaller, more detailed features of 

tomato leaves that are crucial for identifying diseases. 

IV. Our Greenhouse AI models 

A. Faster-RCNN  

 The first model is Faster R-CNN (Region-based Convolutional 

Neural Network). In our previous work, we used Faster R-CNN 

with a ResNet-50 version 2 backbone combined with a Feature 

Pyramid Network (FPN) to achieve high precision in object 

detection. To explore whether an alternative backbone could be 

better for the model's precision, we decided to evaluate ResNet-

101 and ResNet-152 backbones, this time without FPN, and 

compare them against the ResNet-50 with FPN used in our 

earlier study. The ResNet-50 with FPN architecture is known 

for balancing accuracy and computational efficiency by 

leveraging multi-scale feature maps. In contrast, ResNet-101 

and ResNet-152 offer deeper networks compared to ResNet-50, 

with 101 and 152 layers, respectively, compared to 50 layers. 

For a fair comparison, all three models were trained on the same 

dataset, with identical parameters: 25 epochs, a batch size of 8, 

and an image size of 128. 

 In the analysis of the models' performance, we observe two key 

metrics: mAP50 and mAP50:90. The first metric, mAP50, 

reflects the accuracy of object detection at an IoU threshold of 

50%, while the second, mAP50:95, measures accuracy across a 

range of IoU thresholds from 50% to 95%. The ResNet-50 with 

FPN model demonstrates the smallest gap between these two 

metrics, suggesting it maintains consistent performance in both 

detection accuracy and localization precision. This indicates 

that the ResNet-50 with FPN model is particularly effective in 

balancing both accurate object detection and precise 

localization. Conversely, models using ResNet-101 and 

ResNet-152 show a more pronounced gap between the metrics. 

This gap implies that, although these models may achieve 

higher overall detection accuracy, their ability to perform well 

at stricter localization thresholds is less robust compared to 

ResNet-50 with FPN. 

 Having concluded that ResNet-50 with FPN is the most 

suitable model for our study, we will now train it to use 

different parameters from those used to compare it with 

ResNet-101 and ResNet-152. This will allow us to optimize its 

performance and effectively compare it with the other two 

models, YOLOv10 and SSD. For the result section we used a 

batch size of 6, an image size of 640, and 50 epochs. However, 

the training process stopped early at epoch 17 due to early 

stopping, which was activated after the validation performance 

failed to improve for 10 consecutive epochs. 

B. YOLOv10  

The second model is YOLO (You Only Look Once). In our 

previous research paper, we used YOLOv8. Since the release 

of that paper, researchers at Tsinghua University built 

YOLOv10 using the Ultralystics Python package, the same one 

as YOLOv8. 

 

Fig.5. Example of NMS technique 



There are a few differences between the version 8 and version 

10 that made us choose version 10 for this research. For 

example, YOLOv8 uses Non-Maximum Suppression (NMS) 

(Fig.5) as a post-processing step to remove duplicate bounding 

boxes around detected objects. This ensures that each object is 

represented by only one bounding box and not multiple. 

However, the use of NMS adds computational cost during the 

training and inference. During training in YOLOv8, for each 

object in the image, there’s multiple potential bounding boxes 

assigned to it, this is called the one-to-many assignment 

strategy. Then once the model is making a prediction, they use 

NMS to filter out all the redundant bounding boxes, so that the 

most accurate one is the one kept. Furthermore, YOLOv10 

introduces a new approach that eliminates the need for NMS, 

hence the name "NMS-free." This is achieved through a new 

training strategy that employs dual label assignments and a 

consistent matching metric. 

 The introduction of dual label assignments in YOLOv10 

combines the best of both one-to-many and one-to-one 

matching during training, as illustrated in this schema. The first 

head is the one-to-many assignment is the same as the one used 

in YOLOv8, making multiple bounding boxes. The second 

head is the one-to-one on the contrary, making one box per 

object. Both heads contribute to the model training and to make 

sure that they are harmonized YOLOv10 uses a uniform 

matching metric (𝑚(𝛼, 𝛽) = 𝑠 ⋅ 𝑝𝛼 ⋅ 𝐼𝑜𝑈(𝑏̂  ⋅ 𝑏)𝛽 ) [10]. When 

it's time to make a prediction, only the one-to-one will be used 

to make it only one box, no need for the post-processing NMS.  

   Another example of change is the downsampling technique. 

Downsampling refers to the process of reducing the spatial 

dimensions of feature maps in a convolutional neural network 

while also adjusting the number of channels. In YOLOv8, this 

is achieved using standard 3x3 convolutions with a stride of 2, 

which simultaneously reduces the height and width of the 

feature maps by half and increases the number of channels. This 

approach, while effective, performs both spatial reduction and 

channel transformation in a single step, which can be 

computationally intensive. 

  In contrast, YOLOv10 introduces a more efficient method 

known as spatial-channel decoupled downsampling. This 

technique separates the spatial and channel operations into two 

distinct steps. First, it uses a pointwise convolution (1x1) to 

handle channel transformations without affecting the spatial 

dimensions. Then, a depthwise convolution (3x3 with stride 2) 

is employed to reduce the spatial dimensions. This separation 

allows for more efficient computation and better preservation 

of fine details in the feature maps. For our case, this means 

YOLOv10 can more effectively detect smaller objects, such as 

leaves in a greenhouse, by retaining crucial details during the 

downsampling process. 

  For the result section we use the model YOLOv10-B. We 

train this model with a batch size of 16, 50 epochs and 640 as 

the image size. 

C. SSD (Single Shot Detector) 

 The SSD (Single Shot Detector) is our newly added model to 

our research. The SSD adds valuable diversity to our study on 

tomato leaf disease detection. SSD is renowned for its real-time 

detection capabilities, which makes it particularly 

advantageous for applications requiring swift and efficient 

processing. This model stands out for its ability to perform 

object localization and classification in a single pass through 

the network, similar to YOLO [11]. This approach significantly 

reduces computational complexity compared to two-stage 

detectors like Faster R-CNN.  

   In the SSD architecture, two main components work together 

to perform object detection. First is the backbone, it’s a pre-

trained convolutional neural network, such as MobileNetV3 in 

ssdlite320_mobilenet_v3_large or VGG-16 in ssd300_vgg16, 

that serves as a feature extractor. It processes the input image 

and generates feature maps at various levels of detail. These 

feature maps capture important information about the objects in 

the image, such as their shapes, textures, and locations. 

  Second is the SSD head that is attached to the feature maps 

produced by the backbone. It consists of additional 

convolutional layers designed to predict the presence of objects 

at different scales. The SSD head generates bounding box 

coordinates and class scores for each object directly from these 

feature maps. By applying this head to multiple feature maps, 

SSD can detect objects of various sizes and positions within a 

single forward pass through the network. Fig.6 displays the first 

few layers (white boxes) that are the backbone and the last few 

layers (blue boxes) that are the SSD head. 

 

Fig.6. Modified image of a design of a convolutional neural 

network integrated with an SSD detector. [11] 

 While the combination of the backbone and SSD head allows 

for efficient object detection, detecting small objects like 

tomato leaves presents unique challenges. The smaller the 

object, the more grid cells are needed to effectively detect it. 

This is because smaller objects occupy less space in the image, 

so a finer grid allows the model to capture more detailed 

information and better localize these small objects. In SSD, this 

is achieved by using higher-resolution feature maps that 

provide more grid cells, enabling the detection of smaller 



objects like individual tomato leaves. Therefore, in the context 

of the UdeM greenhouse we have to use higher-resolution 

feature maps concerning the tomato leaves. 

 We used a default configuration for bounding boxes, which are 

also known as anchor boxes. These default boxes are 

predefined at multiple scales and aspect ratios for each feature 

map cell in the SSD architecture. They are crucial for the SSD 

model to predict object locations and classes efficiently.  

 In our study, we employed two variants of the SSD model to 

compare their performance in detecting diseases in tomato 

leaves: ssd300_vgg16 and ssdlite320_mobilenet_v3_large. 

The first model, ssd300_vgg16, utilizes the VGG-16 backbone, 

known for its simplicity and effectiveness in feature extraction. 

This model is designed to provide a good balance between 

detection accuracy and computational efficiency, making it 

suitable for scenarios where moderate speed and high precision 

are required. 

 
Fig.7. The Training loss and the mAP50 of 

ssdlite320_mobilenet_v3_large over the epochs. 

 

On the other hand, we also used 

ssdlite320_mobilenet_v3_large, which incorporates the 

MobileNetV3 backbone [12]. This variant is optimized for 

mobile and embedded devices, offering a lighter, faster 

alternative without compromising too much on accuracy. The 

ssdlite320_mobilenet_v3_large model is particularly 

advantageous in real-time applications, where rapid detection 

is crucial, such as in a field setting where quick identification 

of diseased leaves can significantly impact crop management 

decisions. 

By comparing these two models, we aimed to evaluate how 

different backbones and SSD configurations affect the 

detection of small objects, like tomato leaves, and determine 

which approach offers the best trade-off between speed and 

accuracy for our specific application. 

For a fair comparison, the two models were trained on the same 

dataset, with identical parameters: 25 epochs, a batch size of 

32, and an image size of 640.  

 We chose ssdlite320_mobilenet_v3_large for its high mAP50 

(0.8493) and low training loss (0.4619) as shown in Fig.7. In 

comparison to the ssd300_vgg16 where its mAP50 was 0.7438 

and its training loss was 2.3897. Furthermore, Fig.8 shows a 

sudden drop in the mAP50 going from 0.70 to 0.10 and a 

sudden gain in the training loss indicating that the 

ssd300_vgg16 has some stability issues during training when 

exposed to randomness caused by our data shuffling which adds 

to our choice of not picking the ssd300_vgg16 model. 

 

Fig.8. The training loss and the mAP50 over the epochs of 

ssd300_vgg16. 

V. Simulations Results   

  The following subsections will present the results of our 

research for the 3 models. 

A.  Faster R-CNN 

 For the model using ResNet-50 with FPN, the average mAP50 

score across all the epochs came to 92.13%, and the average 

mAP came to 90.83%. The graph (Fig.9) below illustrates the 

different components of the training loss over the epochs.  

 

Fig.9 Training Loss components throughout the epochs for Faster-

RCNN 

 For this model the time of training is about 9 hours and 30 

minutes and for prediction of one image it's between 250 and 

350 milliseconds on average.  



B. YOLOv10 

 For the model using YOLOv10-B, the average mAP50 score 

across all the epochs came to 91.68%. The graph (Fig.10) 

below illustrates the different components of the training loss 

over the epochs. 

 
Fig.10. Training Metrics throughout the epochs for YOLOv10 

 For this model the time of training is about 7 hours and 45 

minutes and for prediction of one image it's between 750 and 

850 milliseconds on average.  

C. SSD 

 For the model using ssdlite320_mobilenet_v3_large, the 

average mAP50 reached to 84.93%. The graph in Fig.11 

illustrates the different components of the training loss over the 

epochs. 

 
Fig.11 Training metrics throughout the epochs for the 

ssdlite320_mobilenet_v3_large model. 

  

 For this model, the training time is approximately 1 hour and 

3 minutes, and the prediction time for a single image is between 

291 and 350 milliseconds on average.  

D. Comparison of all the models 

1. Metrics Comparison 

 The following Table 2. show the comparison of all the relevant 

metrics generated from the training of all three models. As we 

can see, although Faster-RCNN takes the longest to train, it is 

overall the highest performing model that we trained with a 

map50 score of 92.13% and prediction time varying between 

250 and 350 ms. 

 Moreover, our Faster-RCNN achieved an average mAP of 

90.83% compared to the average mAP of 60% of our last 

article, representing a significant improvement of 30.83%. 

Metric Faster-RCNN YOLOv10 SSD 

map50 score 92.13% 91.68%  84.93% 

Training time 9h30 7h45 1h03 

Prediction time (ms) 250-350 750-850 291-350 

Table 2. Metrics comparison between all three models. 

 

2. Practical tests 

 To further test the models, we selected two different images 

from the greenhouse (one with larger leaves and one with 

smaller leaves) that the models had never seen before, to 

evaluate which model detects the most diseased leaves. Table. 

3 below compares the number of leaves detected and 

individually framed by each model. 

 Faster R-CNN YOLOv10 SSD 

Image with 

smaller leaves 

8/15 sick 

leaves 

(53%) 

0/15 sick 

leaves 

(0%) 

0/15 sick 

leaves 

(0%) 

Image with 

bigger leaves 

11/20 sick 

leaves  

(55%) 

3/20 sick 

leaves  

(15%) 

5/20 sick 

leaves 

(25%)  

Table 3. Number of sick leaves detected by each model. 

 From our results, we can once again conclude that Faster R-

CNN is the best-performing model. It consistently detected and 

accurately framed individual leaves, rather than grouping them 

into large bounding boxes. Notably, in the case of images with 

smaller leaves, Faster R-CNN managed to frame the leaves 

separately but incorrectly identified the disease. In contrast, the 

SSD model more accurately identified the disease but framed 

the entire cluster of leaves rather than individual ones. 

3. Analysis discussion 

 While our approach has shown promise, several areas for 

improvement have been identified, particularly related to the 

challenges of handling large clusters of tomato leaves and 

managing the surrounding noise in images. One significant 

challenge is the presence of dense clusters of tomato leaves in 

greenhouse settings, which complicates the accurate 



identification and separation of individual leaves. To address 

these challenges, we propose the following improvements: 

(1) Expanding the Dataset: To enhance the model's robustness 

and accuracy, like we mentioned earlier, we will continue to 

augment our dataset with additional images captured directly 

from the UdeM greenhouse. This will better represent the real 

conditions where the model will be deployed, leading to a more 

balanced and accurate training set. 

(2) Improving Annotation Consistency: We previously 

employed both polygon and bounding box annotations for 

labeling leaves in our images in Roboflow. However, moving 

forward, we will only use bounding box annotations since it 

offers a significant advantage by capturing not just the leaf but 

also its surrounding context, including any background noise. 

This approach is crucial for preserving the natural variations 

around the leaf, which is essential for the model's ability to 

generalize and perform effectively in a greenhouse 

environment. In contrast, polygon annotations tend to "extract" 

the object from the image, isolating it and removing the 

surrounding context by placing it against a black background, 

similar to the dataset from PlantVillage, where each image 

contains a single leaf against a plain background. By using 

bounding boxes, we retain the complete image and simply 

highlight each leaf, ensuring that the model is trained to 

recognize leaves in realistic conditions. 

VI. CONCLUSION  

 This study has highlighted the challenges and potential of 

using object detection models like SSD, Faster R-CNN, and 

YOLOv10 for disease detection in greenhouse environments. 

Our results show that while each model has its strengths, 

handling dense clusters of tomato leaves and managing 

surrounding noise remain significant challenges. To address 

these issues, we propose expanding the dataset with additional 

images from the UdeM school greenhouse and improving 

annotation consistency by focusing on bounding box 

annotations. These steps are essential for enhancing the models' 

robustness and accuracy in real-world applications.  

  Moving forward, we plan to deploy the most promising model 

in a real-time monitoring system within the school greenhouse. 

This system will leverage the model's capabilities to provide 

proactive disease management. Additionally, implementing a 

closed-loop feedback mechanism and cloud-based alerting 

functionalities will ensure continuous model improvement and 

effective disease detection in real-time, thereby providing 

greenhouse operators with timely and actionable insights. 
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