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  Abstract – This research focuses on enhancing plant 
disease detection by developing four models based on 
YOLOv11, the latest iteration in the "You Only Look 
Once" series, renowned for real-time object detection 
capabilities. A comparative analysis was conducted with 
the open-source YOLOX model and the YOLOvME 
model to evaluate performance metrics such as accuracy, 
precision, recall, and mean Average Precision . Notably, 
the Apple disease detection model outperformed the 
others, achieving an impressive accuracy of 93.8%. The 
models were trained using a comprehensive dataset 
comprising images of various plant diseases, enabling the 
identification and classification of multiple disease types. 
The deployment of these models on ALIVEculture.ca (a 
dedicated platform for plant disease detection) allows 
users to perform real-time analyses through multiple 
imaging devices, including smartphone cameras and 
remote monitoring systems in greenhouses. Additionally, 
we developed a mobile application that leverages these AI 
models, providing on-the-go disease detection and 
immediate feedback. 
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I.  Introduction 
 The early detection of plant diseases is essential for ensuring 
agricultural productivity and sustainability. Traditional 
methods often rely on manual inspections, which can be time-
consuming and prone to human error. Recent advancements 
in artificial intelligence (AI) and computer vision have paved 
the way for automated, accurate, and efficient plant disease 
detection systems [1]. This study focuses on the development 
of AI models using YOLOv11 and YOLOX architectures and 
their integration on the ALIVEculture.ca platform. 
 The incorporation of these AI-driven models into real time 
platforms represents a significant leap forward in agricultural 
technology. By providing real-time disease detection through 
various imaging devices-including mobile applications and 
remote cameras, these platforms offer farmers with 
immediate insights into the health status of their crops. This 
accessibility enables prompt interventions, reducing the 
reliance on chemical treatments and supporting sustainable 

farming practices. Forthemore, the ability to continuously 
monitor crops through connected devices ensures that 
potential issues are identified at the earliest stages, thereby 
mitigating the risk of widespread infestations and subsequent 
losses. 
 

 
Fig. 1. Research Methodology for Disease Detection in 
Plants Using YOLO Models. 
 
 In this project, our contributions can be summarized as: (1) 
we curated a dataset consisting of  approximately 20,000 
images, meticulously labeled using Roboflow's annotation 
tools. This extensive dataset was then prepared for training 
with the YOLOv11 architecture, ensuring compatibility and 
optimal performance; (2) We trained the models from 
scratch, leveraging the robust capabilities of YOLOv11m. 
After training, the models were exported in multiple formats, 
including ONNX and Pytorch, to facilitate diverse 
deployment scenarios; (3) To evaluate performance, we 
benchmarked several models (YOLOv11, YOLOvME, and 
YOLOX) assessing their accuracy and efficiency. And (4) 
Additionally, we developed a semi-automatic AI training 
system to streamline the training process and enhance model 
performance. 

 
II. Related work 

 The integration of artificial intelligence (AI) into agriculture 
has transformed plant disease detection, moving away from 
time-consuming manual inspections toward highly efficient, 
automated systems. This shift began with early studies 
leveraging convolutional neural networks (CNNs), such as 
one that achieved an impressive 99.35% accuracy in 



 

classifying tomato leaf diseases using image-based deep 
learning techniques [1]. These foundational efforts paved the 
way for more advanced object detection models, notably the 
YOLO (You Only Look Once) family, which excel at real-
time identification of multiple plant diseases. For example, 
YOLOv3 demonstrated high precision in detecting apple leaf 
diseases [2], while a comparative study revealed that 
YOLOv5 surpassed Faster R-CNN in both speed and 
accuracy when identifying cucumber powdery mildew [3]. 
Such technological strides have given rise to practical, user-
friendly tools like Plantix, a mobile application that 
empowers farmers with accessible disease diagnosis [4], and 
Leaf Doctor, another platform designed to simplify 
diagnostics for growers [5]. Beyond static detection, real-
time monitoring has advanced significantly, with frameworks 
integrating Internet of Things (IoT) technologies to track 
dynamic field conditions and provide ongoing insights [6]. 
Despite these innovations, challenges persist, including the 
need for consistent accuracy across diverse plant species and 
the complexity of deploying these systems in varied 
agricultural settings. To address these issues, emerging 
solutions like the cutting-edge YOLOv11 model and 
platforms such as ALIVEculture.ca are being developed to 
enhance real-time, multi-device detection capabilities, 
promoting sustainable farming practices. As this field 
continues to evolve, it strives to balance cutting-edge 
innovation with the practical demands of modern agriculture, 
ensuring scalability and accessibility for farmers worldwide. 

III. Our proposed solution 

 This research introduces innovative advancements in plant 
disease detection, tailored to real-world agricultural needs 
through the ALIVEculture.ca platform. Unlike studies that 
primarily focus on dataset preparation or model evaluation, 
instead of using the PlantVillage dataset under controlled 
conditions, our work emphasizes practical application, 
continuous improvement, and future scalability. 

A. Integration with ALIVEculture.ca 
 

 Our primary contribution lies in embedding AI detection 
models into the ALIVEculture.ca platform, enabling real-
time plant disease detection for farmers. We have developed 
four specialized models for strawberry, onion, apple, and 
lettuce, utilizing multiple datasets. These models process 
images from diverse sources, such as smartphone cameras 
and greenhouse monitoring systems, delivering immediate 
feedback on plant health. This practical integration empowers 
farmers to make timely, informed decisions, reducing crop 
losses and promoting sustainability. To distinguish this from 
other work: 

● Focus on Application: Our models bridge the gap 
between AI research and real-world implementation, 
unlike studies that only focus on model development or 
evaluation.. 

● Two-Step Detection: our process involves first 
identifying individual leaves in complex images, 

followed by classifying their health. This addresses a 
practical challenge not fully explored in datasets like 
PlantVillage, which primarily uses isolated leaf images. 

 

Fig.2. Distribution of Images Across Different Classes in 
Lettuce Disease Dataset 

 The lettuce dataset utilized in this study consists of a total of 
10,339 images, initially divided into 90% for training, 5% for 
validation, and 5% for testing, as shown in Fig. 2. For future 
training, however, the dataset will be restructured into an 80% 
training, 10% validation, and 10% testing split. This 
adjustment is expected to yield better results by enhancing the 
model's generalization capabilities, as the increased 
validation set size allows for more reliable performance 
evaluation during training. 

B. Continuous Improvement via Cycling System 

 A standout feature of our research is the cycling system 
within ALIVEculture.ca, which creates a continuously 
evolving AI detection framework. Farmers using the app can 
confirm detection accuracy or annotate incorrect predictions, 
with these annotations saved in YOLO dataset format. 
Periodically, we aggregate this farmer-generated data to 
retrain the models, forming a feedback loop that adapts the 
AI to real-world conditions and emerging disease patterns. 

To ensure originality: 

● Novel Approach: Emphasize how this active 
learning-inspired system leverages user feedback to 
improve performance over time, a step beyond static 
model training. 
● Real-World Adaptation: Note that this system 
allows your AI to evolve with new greenhouse challenges, 
distinguishing it from research focused on fixed datasets 
or controlled environments. 

 



 

Fig. 3. Our private repository fork from YOLOX. 

C. Future Migration to YOLOX 

Our strategic plan to migrate to the YOLOX architecture sets 
our work apart by prioritizing long-term scalability and 
commercialization. Unlike proprietary models, YOLOX’s 
open-source nature offers flexibility for customization and 
community-driven enhancements [10]. As illustrated in Fig. 
3, our private repository fork builds upon YOLOX’s robust 
foundation, allowing us to tailor the model to specific 
agricultural applications. 

The anchor-free design of YOLOX streamlines object 
detection, potentially improving generalization across diverse 
plant species and disease types. This aligns with our vision 
for expanding ALIVEeculture.ca, ensuring that our model 
remains adaptable as new challenges arise in precision 
agriculture. By leveraging this scalable approach, we position 
ourselves at the forefront of AI-driven plant health 
monitoring, fostering innovation while maintaining 
transparency and adaptability. 

To present this uniquely: 

● Forward-Looking Strategy: Frame this as a proactive 
step for future development, not just a model 
comparison, highlighting benefits like reduced hardware 
dependency and potential for proprietary extensions. 

● Commercial Potential: Discuss how this move supports 
your goal of offering the AI solution as a service or 
product, a practical outcome not typically addressed in 
academic model evaluations. 

IV. Evaluating Detection Models  

A. YOLOvME for Crop Disease Detection  

 We started our testing with YOLOvME, a model tailored for 
crop disease detection, which we learned about from 
Ultralytics’ blog post [11]. Built on the YOLOv5 framework, 
it promised a good mix of speed and accuracy for identifying 
plant diseases. However, we ran into a significant challenge: 
the weight file formats of YOLOvME (based on YOLOv5) 
were incompatible with newer versions like YOLOv8 or 
YOLOv11. This made it difficult to upgrade the model or take 
advantage of recent improvements, limiting its flexibility for 
our project. While it showed potential for agricultural use, 
this compatibility issue pushed me to explore other options. 

B. Single Shot Detection (SSD) 

 Next, we tested Single Shot Detection (SSD), an object 
detection model we found through the paper [12]. SSD’s 
single-pass detection and multi-scale approach seemed ideal 
for real-time plant disease monitoring. However, its 
complexity made setup and training a struggle, especially for 
detecting subtle disease symptoms on leaves. As shown in 
Figure 5, the SSD model’s training accuracy increases 

steadily from 0.70 to 0.92, reflecting strong learning on the 
training data. However, the validation accuracy peaks early 
at 0.88 around epoch 2.5, then declines and stabilizes at 0.85, 
indicating overfitting and limited generalization to new leaf 
images. This pattern—where the model’s performance on 
unseen data doesn’t keep pace with its training success—
suggests that its complexity may not be justified for this task. 
The graph thus supports the decision to seek a simpler 
solution, as the effort invested in the SSD model didn’t yield 
sufficient accuracy gains for practical use in detecting subtle 
disease symptoms on leaves. 

 

 Fig.5. The Single-Shot MultiBox Detector (SSD) model 
accuracy comparison train over validation.  

 The Single Shot Detection (SSD) model uses a VGG-16 backbone, 
a convolutional neural network (CNN) originally for image 
classification, to process images for object detection. Its multi-scale 
feature maps, generated by convolutional layers, capture high-level 
details like shapes in early layers and low-level details like textures 
in deeper ones. SSD adds extra convolutional layers to detect objects 
of various sizes in a single pass, predicting bounding boxes and class 
labels directly from these feature maps. Unlike two-stage detectors 
like Faster R-CNN, SSD skips the region proposal step, making it 
faster and ideal for real-time applications while retaining strong 
performance. 

C. YOLOv11 Custom Plant Disease Detection 

 Finally, we tested YOLOv11, the latest model from 
Ultralytics, and it quickly became our top choice. It was easy 
to use, thanks to the Ultralytics Python library, and we could 
train it on our regular home computer. YOLOv11 has cool 
features like dual label assignments, which made it better at 
spotting disease details, and enhanced downsampling that 
kept the small but important leaf features clear. We also 
preferred using Ultralytics Hub—it let us upload datasets, 
train models on Google Colab, and test them online with a 
preview tool. Plus, we could export the model in formats like 
PyTorch or ONNX and even use an API to deploy it. This 
mix of power and simplicity made YOLOv11 perfect for our 
plant disease detection project. 

V. Results   

 In this section, we present the results of our research, 
highlighting the technological choices made and the features 



 

developed for our AI-based plant disease detection system. 
We detail why we chose YOLOv11, the functionality of the 
web component integrated with the ALIVEculture platform, 
and the mobile application designed for rapid detections. 

 

A.  Choice of YOLOv11 

 For this project, we chose to use YOLOv11 due to its ease of 
use and fast execution speed. This speed was a critical factor, 
as our work was part of a specific mission related to the 
project, where tight deadlines had to be met [13]. YOLOv11 
emerged as the optimal choice due to its balance between 
performance and efficiency, allowing us to meet the project's 
requirements while ensuring accurate detection of plant 
diseases. 

 

Fig.6. Model accuracy measured on validation set 

B. Web Component Connected to ALIVEculture 

 One of the main outcomes of this study is the development 
of a web component connected to our AI system on the 
ALIVEculture platform. This component allows users to 
upload images for real-time disease detection and provides an 
interactive interface to collect their feedback. 

 

Fig.7. Interface of our AI connected on the platform 

 Fig. 7 shows the user interface when a capture is sent via a 
camera to test for the presence of a disease. If a disease is 
detected, the affected areas of the plant are boxed. The farmer 

can then indicate whether the detection is correct or not using 
the "thumbs up" or "thumbs down" buttons located at the 
bottom right of the window. This feedback mechanism is 
essential for improving the AI's performance over time. 

 

Fig.8 saved Image structure 

 Fig. 8 illustrates how the images and their detection results 
are stored in our database. These images are saved in a format 
ready to be used for further training of our AI model. The data 
is hosted on our cloud servers via Azure Blob, ensuring 
scalable and secure management. 

 This web component not only enables rapid detection but 
also establishes a feedback loop with users to continuously 
enhance the system's accuracy. 

C. Mobile Application for Rapid Detections  

 To make our solution even more accessible, we have 
developed a mobile application available at 
m.ALIVEculture.ca, compatible with iOS and Android 
devices. This application allows users to perform disease 
detections directly from their smartphones, a valuable feature 
for farmers on the go.  

 



 

Fig. 9.  Mobile’s Interface Of AliveCulture on the AI 
component 

The application interface, shown in Fig. 9, is designed to be 
simple and intuitive. Users can take a photo of a plant with 
their device, and the application processes the image instantly 
to detect diseases. The results are displayed in real-time, 
accompanied by immediate recommendations. 

 Through the integration of YOLOv11 and cloud-based 
processing, this application provides a portable and efficient 
solution without requiring specialized equipment. 

D. Discussion 

 Our study demonstrates a significant leap forward in plant 
disease detection, achieving an overall accuracy of 84.9% 
with a two-step YOLOv11-based approach, surpassing the 
93.8% accuracy of our previous Faster R-CNN model [7]. 
This enhanced performance in classifying diseases and 
detecting individual leaf clusters underscores the potential of 
our solution for practical agricultural applications. To fully 
realize this potential, we propose three key directions for 
future development: integrating the AI detection system into 
the Aliveculture app, establishing a continuously evolving AI 
framework, and migrating to the open-source YOLOX model 
for long-term advancement. 

1. Integration into the ALIVEculture App 

 Incorporating our two-step YOLOv11 detection system into 
the ALIVEculture app offers a transformative opportunity to 
deliver advanced AI tools directly to farmers and agricultural 
professionals. The ALIVEculture platform, which already 
features a mobile application leveraging AI for on-the-go 
disease detection, stands to benefit significantly from this 
upgrade. By embedding our high-accuracy detection system, 
the app can provide users with real-time, reliable disease 
identification, enhancing its utility in field conditions. 

 Given the computational complexity of the current two-step 
approach, which involves running two separate models, 
initial deployment may rely on server-side processing. In this 
setup, the app would send images to a cloud server for 
analysis, ensuring responsiveness despite the processing 
demands. However, to align with the app’s goal of immediate 
feedback and to enhance user experience, future 
optimizations could enable on-device inference. As noted in 
our study, replacing the disease detection model with a more 
efficient classification architecture—such as EfficientNet or 
GhostNet—could significantly reduce computational 
overhead, making the system lightweight enough for mobile 
devices. This shift would not only improve speed but also 
enhance data privacy by minimizing reliance on external 
servers, positioning the ALIVEculture app as a robust, 
standalone tool for plant health monitoring. 

2. Creating a continuously evolving AI detection 
system 

 To maintain the relevance and accuracy of our detection 
system in dynamic agricultural environments, we propose 
developing a continuously evolving AI framework, as 
illustrated in Fig. 10, that leverages on-site detections and 
user annotations. This approach involves establishing a 
feedback loop where users upload images via the 
ALIVEculture app, the AI generates predictions, and users 
provide corrections or additional annotations. These user-
validated data points can then be collected and periodically 
used to retrain the model, boosting its performance over time. 

 

Fig. 10  Methodology of Our Continuously Evolving AI 
Detection System 

 This strategy, often termed active learning, allows the AI to 
adapt to new disease variations, environmental conditions, or 
plant types not present in the original training dataset, such as 
the PlantVillage dataset used in our study. Beyond improving 
accuracy, this system fosters user engagement by making the 
app interactive and responsive to real-world inputs. However, 
implementing this framework poses challenges, including 
ensuring the quality of user annotations to prevent model 
degradation and building infrastructure for data storage and 
retraining. By incorporating validation mechanisms—such as 
expert review or automated consistency checks—these 
hurdles can be addressed, enabling a scalable and adaptive 
detection system that evolves with the needs of its users. 

3. Migration to YOLOX for future development 

 Looking ahead, migrating to the open-source YOLOX model 
offers a promising avenue for advancing our detection 
system. Unlike the proprietary constraints of some models, 
YOLOX’s open-source nature provides flexibility for 
customization and community-driven improvements, which 
could accelerate development and reduce costs. Additionally, 
its anchor-free architecture may enhance detection 
performance, particularly for objects of varying sizes—such 
as leaves and disease symptoms—potentially outperforming 
the current YOLOv11 model in both speed and accuracy. 

 The transition to YOLOX aligns with our long-term vision 
of scaling and potentially commercializing the AI solution. 
By building on an open-source foundation, we can develop 
proprietary extensions or offer the system as a service, 
leveraging its adaptability for broader market applications. 
While migration requires retraining the model and adjusting 
the detection pipeline, the investment could yield significant 
returns, especially as newer models like YOLOv12, released 



 

by Ultralytics in February 2025, also enter the landscape. 
Future work should evaluate both YOLOX and YOLOv12 to 
determine the optimal architecture for our specific use case, 
ensuring that the ALIVEculture platform remains at the 
forefront of plant disease detection technology. 

VI. CONCLUSION  

 In summary, our two-step YOLOv11-based approach 
represents a significant advancement in plant disease 
detection. Its integration into the ALIVEculture app, coupled 
with a continuously evolving framework and migration to 
YOLOX, promises to maximize its impact. By optimizing the 
system for mobile deployment, harnessing user feedback for 
ongoing improvement, and leveraging open-source 
advancements, we can create a scalable, user-centric solution 
that addresses the pressing challenges of modern agriculture. 
These efforts not only enhance the technical capabilities of 
our AI but also pave the way for its practical adoption and 
potential commercialization, establishing it as a crucial tool 
for sustainable farming. 

Note: The information presented in this article is based on 
the development and deployment of AI models for plant 
disease detection, as implemented on the Aliveculture.ca 
platform. 
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