
Finding better learning algorithms for self-driving

cars
An overview of the LAOP platform

Jihene REZGUI, Clément BISAILLON, Léonard OEST O’LEARY

Laboratoire Recherche Informatique Maisonneuve (LRIMa)

Montreal, Canada

jrezgui@cmaisonneuve.qc.ca

Abstract— Cars are becoming more and more

intelligent, embedded with a range of sensors to give them

local perception of their environment (LIDARs, cameras,

etc.). Trendy companies like Google and Tesla are actively

testing cars on American roads that can drive without any

human interaction [1]. Neural networks are the modern

approach for autonomous cars. However, an inefficient

neural network algorithm will make the learning process

slower and will result in a less reliable autonomous vehicle.

In this paper, we will introduce a platform built in JAVA

named LAOP (Learning Algorithm Optimization

Platform) [2] while explaining the solutions we found to

make it easy for researchers to test and compare their own

algorithms. Then, we will show how we have integrated a

natural selection algorithm with a neural network in order

to improve them. Moreover, we will demonstrate how the

Fully Connected Neural Network and the NEAT [3]

(NeuroEvolution of Augmenting Topologies) algorithms

are implemented in the context of vehicular learning on

LAOP. Finally, we will display the different results

extracted from LAOP by tuning several various

parameters such as the weight mutation chance and the

car density in the simulation.

Keywords— Neural networks; evolution; self-driving cars;

natural selection; platform.

I. INTRODUCTION

 Autonomous vehicles could solve most current world

problems regarding cars. Driven by Artificial Neural Networks

(ANN), these cars will reduce the amount of traffic and

accidents related to human error. For this reason, companies

like Google and Tesla are actively conducting researches and

innovating in this field. However, research in vehicular neural

networks seems to be slowed because there is no centralised

method to easily develop and compare new algorithms. With a

uniform method to compare them, the research aiming to find

better learning algorithms would be more efficient. To the best

to our knowledge, we believe to be the first to develop an

open-source environment, called LOAP, that lets other people

implement their algorithms and easily compare them with

others in a vehicular environment that simulates real world

conditions.

 Our contributions can be summarized as follows: (1) We

introduce an open-source environment named LAOP where

researchers can easily develop, test and compare their learning

algorithms; (2) we propose a Genetic Natural Selection

algorithm, called GNS* to improve the learning experience of

the algorithms; (3) We implement several algorithms on

LAOP such as the NEAT algorithm and the Fully Connected

Algorithm so that researchers can start to compare their

algorithms right away and (4) We demonstrate through

extensive simulation the results we obtained by tuning some

parameters, like the weight mutation chance, which could

improve the learning experience. For the purpose of this paper,

the weight mutation chance is defined as the chance that the

connection's weight from the neural network changes

randomly.

 The second part of the paper provides a brief overview of

related work and compares them with our platform. In section

III, the platform will be examined by explaining the simulation

process and how the cars are learning to avoid obstacles. In

section IV, we showcase the algorithms added to the platform

so that researchers can start working immediately by

comparing their algorithms to ours. Section V shows the

results we got by simulating the Fully Connected algorithm for

two scenarios. Finally, conclusions are drawn in Section VI.

II. COMPARISON WITH OTHER TOOLS

Other tools already exist to simulate a car driving in an
environment. For example, CARLA [4] proposes an open-
source driving simulator that allows people to develop
programs on top of it. It is used by people learning to drive
and to validate autonomous systems. The force of CARLA
resides in its alikeness to the real world. However, the problem
with this simulator is the difficulty to compare multiple
algorithms. Our proposed platform LAOP provides a quick
comparison between several algorithms according to different
parameters.

 Another tool like our platform is described in [5] proposed

by S. Arzt. This project demonstrates how to implement an

ANN coupled with algorithms of natural selection. As in our

LAOP platform, the author simulates cars and makes them

learn to avoid walls using artificial networks algorithms. The

problem with this tool is the difficulty to add your own

algorithms and to improve them.

 The pole balancing problem [6] can also be compared with
our platform since both are used to test and improve learning
algorithms. The problem with this technique is that is doesn’t
depict a real-world problem. LAOP offers to improve learning
algorithms in the context of vehicular mobility and allows to
test the algorithms with real settings.

III. OUR PROPOSED PLATFORM LAOP

 LAOP is a tool that lets people build, test and compare their

own learning algorithms in a stable environment in the context

of vehicular learning. Our platform can be used to accelerate

the development of algorithms and to try to improve the best

performing ones. The platform is divided into three parts: (A)

settings, (B) simulation and (C) learning.

A. The settings
 It is important to be able to easily configure and compare

multiple variations of the same algorithm, as the goal of the

platform is to improve them. LAOP lets the user configure

three types of settings: (1) simulation settings, (2) genetic

settings and (3) algorithm settings. Simulation settings (1) are

specific for each simulation batch and contain variables such

as the car density and the number of sensors. Genetic settings

(2) are similar to the simulation settings, as they are specific

for a simulation batch. However, they are responsible for all

the genetic variables, such as the chance of mutation and the

chance of having a changed connection weight. The algorithm

settings (3) are the ones created by the designer of an

algorithm. They are easily accessible within the code. The

platform lets the designer choose from the beginning the

algorithms to compare and their settings. This way, the user

can compare the same algorithms multiple times with those

settings modified and find the settings that perform best. As an

example, we tested multiple times the Fully Connected

Algorithm with different mutation chances to try to find the

optimal configuration.

B. The simulation batches

Fig. 1: A simulation batch is created for every compared

algorithm (Fully Connected and Neat algorithms).

 LAOP separates the update loop in three layers: (1)

simulation batches, (2) simulations and (3) generations, as

illustrated in Fig. 1. When the user runs one or multiple

algorithms on the platform, a simulation batch (1) is created

for every pair of learning algorithms and settings chosen.

There could be two of the same learning algorithms with

different settings in the two different batches. The number of

generations in each simulation is determined by the simulation

settings. Fig. 1 shows that the first batch runs simulations for

the Fully Connected algorithm and the second batch runs

simulations for the NEAT algorithm.

 The role of the simulation batch (1) is to coordinate multiple

simulations. It tells the simulations which algorithms and

settings are required to initiate the cars. All simulations under

a specific batch run the same settings and algorithms. The

simulations (2) compute everything related to moving the cars

according to the algorithm and changing its state when

colliding with walls. The generations (3) are used to keep track

of the average, the median, the highest and the lowest

performing car. We use a function called fitness function to

determine the performance of a car. A generation ends when

all the cars hit an obstacle or when the time limit for a

generation is reached. The information contained in the

generations is saved to be analysed. The separation of the

generation allows to easily store and retrieve the performance

data and easily populate the graphs.

 The different simulations let us run multiple times the same

algorithms and settings. There can be errors related to

randomness when dealing with neural networks and genetic

algorithm. The same algorithms are tested multiple times with

the same settings in order to have an average performance

score, thus reducing the error related to chance. For example,

one simulation might be performing better than another only

because of the initial random values, and not because it is

more efficient. Having multiple simulations solves this

problem.

1) The simulation and the environment

 A simulation contains two important elements: the

environment and the cars. When a simulation runs, the cars are

updated according to the environment and the simulation

batch’s algorithm (see section B.2 for more details).

 The environment has also two important elements: the

starting location and the obstacles. The starting point is where

the cars spawns. The obstacles are lines that act like walls. If a

car hits one of those, it is eliminated. An eliminated car is not

updated anymore. When the generation ends, the data about all

the cars get stored in the generation.
 LAOP makes it easy for algorithm developers to create their
own environment. The platform comes with a built-in map
editor. It offers different tools to help create an environment
with obstacles. The ability to create maps is useful to test how
algorithms perform in a different context. For example, by
testing multiple maps, we found that only relying on the
maximum distance from the start is not the best option to
compute the fitness score. In the future, the platform will be
able to import a shapefile [8] containing real-world road
information. This lets the algorithm test its capabilities in real-
world environments.

2) The car
 While a simulation is running, rectangles with different
colors will move on the screen. These are the cars being
updated by the simulation. This section describes how the cars
retrieve information from their environment and then move

through the environment.

 The car has three components: (1) the proximity sensors, (2)

the ANN and (3) the wheels. Each component is represented in

Fig. 2.

 The proximity sensors (1) let the car gather information about

its environment. The user determines the number of car

sensors in the settings. The proximity sensors provide the

distance in a given line between the car and an obstacle. The

result is then normalized to a value between 0 and 1. A value

of 1 indicates that no wall is detected in the direction of the

sensor; the more the value approaches 0, the more the obstacle

is approaching the car.

 Fig. 2. A car with its different elements. The sensors give
information to the ANN that determines the values of the
wheels.

 The wheels (3) control the direction in which the car will go.
They can each receive a value between 0 and 1 and this will
determine the force of the wheel. If the value received on the
right wheel is greater than the one on the left, the car will go
left, and vice versa. If the value of the two wheels are the
same, the car will go in a straight line.

 The ANN (2) makes the link between the sensors (1) and the
wheels (3). It is the algorithm given by the simulation batch. It
takes as inputs the values of the different sensors and outputs
the values of the two back wheels. - in other words, on every
update of the simulation, the car’s ANN computes the speed at
which each wheel should go based on the value of each of its
sensors.

 In the scenarios we considered, we only used proximity
sensors. In the future, we plan on adding more types of
sensors. According to the MEMS Journal [7], vehicles have
between 60 and 100 sensors on board. This number is
expected to increase to an average of 200 sensors. We could
add a temperature, a light, a pressure, an acceleration and a
speed sensor to make the car more alert of its environment.

C. Making the cars learn with GNS*

 When all the cars hit an obstacle or when the simulation time
exceeds the time in the settings, the generation finishes. Then,
an algorithm is used to modify the cars and make them learn.

To achieve this, we created the Genetic Natural Selection*
algorithm (GNS*). This algorithm was inspired by the concept
of natural selection. It takes a set of cars as inputs and returns
a modified one. The GNS* algorithm works in three phases:
(1) the attribution of fitness; (2) the elimination process and
(3) the repopulation process as displayed in the Fig. 3. This
algorithm is used each time a generation is finished. Our
platform lets the user easily change this algorithm in the code
if desired.

Fig. 3: The process of simulating consists of three phases: (1) the

evaluation, (2) the selection and (3) the repopulation.

1) The fitness function

 To be able to make the difference between well-performing

cars and the others, we use a function called the fitness

function (Eq. 1). We deduced this formula through extensive

simulations. It determines how well the car performed. The

fitness function can be easily changed within our platform to

best suit another algorithm. For our scenarios, we proposed

this fitness function:

𝑓 = 𝑥 + 𝑑 (1)

 Where 𝑓 is the fitness of the car, 𝑥 is the maximum distance

from the start the car (in pixels) and 𝑑 is the total distance

traveled by the car (also in pixels). The maximum distance is

defined as the maximum distance between the start and the car

in a straight line.

Fig. 4: If we rely only on the maximum distance from the start, the

cars would get stuck in the yellow area since they would have a better

fitness there than those reaching the end.

 Our goal with this formula is to give a higher fitness to the

cars going the furthest along the “path”. If we only rely on

𝑓 = 𝑥, the car will get stuck because it attains the maximum

value of x when it reaches the furthest point from the map and

not by going the furthest on the path. Figure 4 shows this

problem. Represented with the red line is the path that the cars

take if we only rely on the maximum distance from the start. In

green is the path that the cars take if we add the total distance

traveled to the equation.

2) The elimination algorithm

 The goal of this algorithm is to eliminate the worst
performing cars and keep the best ones. After the attribution of
fitness, this algorithm uses a weighted random distribution
algorithm to eliminate the worst performing cars. Our
implementation of the weighted random distribution algorithm
is as follows: we first sort the array of cars depending on their
fitness score, then the algorithm gives each car a weight
depending on its index in the sorted list of cars. It assigns a
weight of 99.0 to the worst car and a weight of 0.5 to the best
one. The weights of the cars in between are determined by a
reverse exponential function. Then, the algorithm generates a
random floating-point number between 1 and the total of all
the weights. For each car, it removes its weight from the
randomly chosen number and this car is removed from the
array. This algorithm is repeated until the population size is
half the size of the initial population. Fig. 5 shows that even if
a car performs poorly in the simulation, it still has a chance to
survive the elimination process.

Fig 5. The distribution of the cars that survived the
elimination process (orange) versus the cars before the
elimination process (blue).

 We use this algorithm instead of removing the worst half
because even a less performing car might be useful for the
learning process. It might have some traits that, when coupled
with other cars, will result in a better performing neural
network. However, the weighted random distribution allows
us to have more chance to keep the best performing cars as
shown in Fig. 5.

3) The repopulation process

 When the elimination process ends, the GNS* algorithm
populates the array with new cars having similar traits with the
ones that survived. To create a new car from two parents, the
GNS* algorithm is as follows: it first choses two cars
randomly in the surviving cars population. Then, in the case of
the Fully Connected Algorithm, a new neural network is
created with the same topology of its parents. It iterates
through each of its connections and it takes the weight from a
randomly chosen parent at the same location in the topology.
At the end of the reproduction, the child has weights coming
randomly from both of its parents.

 When the set of cars has been repopulated, the simulation
then runs the newly created generation of cars. The process of
simulation, selection and repopulation is repeated until the
maximum number of generations specified in the settings is
reached. The process is represented in Fig. 3.

IV. PROPOSED ALGORITHMS

 The LAOP platform comes with two premade algorithms for
the user to compare against. We offer a version of a fully
connected neural network algorithm and an implementation of
the NEAT algorithm proposed by Kenneth O. Stanley and
Risto Miikkulainen [3]. We also made it possible and easy for
developers to add their own algorithm to the LAOP platform.
This section describes how we implemented the fully
connected and the NEAT algorithm in our platform and how
to add an algorithm.

A. The fully connected Algorithm

 Fig. 6: A neural network contains multiple layers. The first
one, in red, represents the nodes receiving the information
from its environment. The last layer, in blue, gives it outputs
to the car’s wheels.

 A fully connected neural network, as represented in Fig. 6, is
a network starting with a fixed number of layers each
containing a fixed number of neurons. In this type of neural
network, each node is connected to every node in the next
layer. To compute the value at a specific neuron, we do the
sum of the value of each neuron (𝑥𝑖) pointing to this specific
neuron, multiplied by the weight of the connection (𝑤𝑖)
linking the two neurons. Then we normalise this value
according to an activation function (𝜑). Here, we used the
sigmoid function (3). The nodes in the first layer is not
calculated, as they receive their input from the environment. In

0

50

100

150

200

250

0 10 20 30 40 50 60 70 80 90

C
ar

 f
it

n
es

s

Car index

Cars that were eliminated

Cars that survived

our case, the inputs were the value of each proximity sensors.

𝑦 = 𝑓(𝑥, 𝑤) = 𝜑 (∑ 𝑤𝑖𝑥𝑖

𝑚

𝑖=1

) (2)

𝜑(𝑥) =
1

1 + 𝑒−𝑥
 (3)

 In equation 2, 𝑦 is the computed value of the node. 𝑥𝑖 is the
value of the previous layer at the position 𝑖. 𝑤𝑖 is the value of
the connection at the position 𝑖. 𝑚 is the number of neurons in
the previous layer. 𝜑 is the activation function that outputs a
value between 0 and 1. The activation function we used is the
sigmoid function (3).

 We compute the value of all the nodes of the neural network.
Then, we extract the values of each node in the last layer and
use them as inputs for the wheels.

B. The Neat algorithm

 The problem with the Fully Connected neural network
algorithm is the fixed topology throughout the simulation. It is
limiting the neural network to find a solution with the best
arrangement of weights. If the topology is altered throughout
the simulation, the network is not only able to find the best
weight arrangement, but also the best topology. For example, a
network with 3 layers might be performing better than a
network with 4 layers. If the number of layers is fixed, two
simulations must be run to test the 3-layer option and the 4-
layer option. This optimal neural network could be found in
just one run with a variable topology.

Fig. 7: In the NEAT algorithm, the network’s nodes are
not connected to all the nodes in the next layers. New
connections are created and removed between generations.

 The NEAT algorithm resolves this problem as its topology is
variable. As the Fully Connected neural network, the NEAT
network has an input layer and an output layer. The difference
resides in the fact that the topology of a network using NEAT
is not fixed, as shown in Fig. 7. In its simplest form, the
algorithm has only one connection going from a random input
to a random output. It evolves throughout the simulation by
randomly creating new nodes and connecting them to the
network. The evolution of the topology in NEAT makes it
possible to find other solutions that can be hidden in the
topology.

C. Creating an algorithm in LOAP

 We built our platform for anybody (researcher, student, etc...)

to easily add their own algorithms. We designed an easy-to-
use abstract class called the Neural Network that can be used
to create a Learning Algorithm. Once extended and added to
the array of current algorithms, the new class will control the
behaviour of the cars. Two methods are required to be
redefined: feedForward() and crossOver() as shown in
diagram 1. The feedForward() method is where the
computation happens. This function retrieves the value of the
different Transmitters (the sensors) and assign a value to the
Receivers (the wheels).

 For example, the fully connected algorithm takes the values
of all the sensors (the transmitters), puts them in each of the
input nodes, activates all the layers and applies the value of the
two output nodes to the two back wheels of the car (the
receivers).

V. SIMULATIONS RESULTS

 In this section, we compare the Fully Connected Algorithm
with different parameters to see their effects on the learning
performance of the algorithm. We evaluated (1) the impact of
changing the car density and (2) the connection mutation
chance.

Table I. Parameters of the simulation

Parameter Value

Number of simulations 10

Number of generations 10

Number of sensors 7

Chance of weight
mutation

1%, 3%, 5%, 7%, 9% and
11%

Car density 20, 50, 100, 150 and 200

5.1 Simulations configuration

 Table I shows the different settings we used in our
experiments and the variable settings for our two scenarios.
We decided to run 10 simulations per algorithm variation to
reduce the error related to randomness. When we test the
different weight mutation chance, we keep the car density at
25. When we vary the car density, we keep the chance of
weight mutation to 9%.

 In the first scenario, we highlighted the impact of changing
the chance of a connection weight, replacing it by a random
value during the mutation process. In Fig. 8, each line
represents the Fully Connected algorithm with a different
weight modification chance.

 Through extensive simulations, we conclude that the Fully
Connected algorithm performs better when its connection
weights have 9% and 11% chance of getting modified. We

expect that going higher than a certain threshold would result
in a performance drop because of the higher amount of
randomness.

Fig 8. Scenario 1: How the performance of the Fully
Connected Algorithm is influenced by the weight
modification chance.

Fig 9. Scenario 2: How the car density affects the
performance of the Fully Connected algorithm.

 In the second scenario, we investigated a possible
correlation between the car density and the performance of the
Fully Connected algorithm. Fig. 9 shows the evolution of the
average fitness for each algorithm variation tested.

 We cannot conclude that the car density influences the
performance of the algorithm, but we note that it has an impact
on the smoothness of the curve. The blue line is very shattered
and has less cars, while the orange one with 200 cars has a
very smooth line. This is probably due to the stability of the
population.

VI. CONCLUSION AND FUTURE WORK

 In this paper, we offer a platform that makes it easy for
anybody to test and compare their learning algorithms. The
platform uses learning algorithms with a modified genetic
natural selection algorithm named GNS* to train them.
Multiple algorithms are built in the platform, such as the fully
connected ANN and a version of the NEAT algorithm.
Through extensive simulation, we found out that our platform
LOAP could be used to better understand learning algorithms
and to find better settings. For example, we could use LAOP
to find the optimal number of proximity sensors.

 In the future, the platform will have major improvements,
like a better respect of the real-world conditions, more sensors,
the ability to import a shapefile and a web platform where
users can share their algorithms.

ACKNOWLEDGMENT

 This research was financially supported by the “Fonds

Québécois de la recherche sur la nature et les technologies

(FRQNT).”

References

[1] "On the Road to Fully Self-Driving", Waymo safety report,

2017, https://storage.googleapis.com/sdc-prod/v1/safety-

report/waymo-safety-report-2017-10.pdf [last visit

06/01/2019].

[2] L. Oest O’Leary, C. Bisaillon and J. Rezgui, "LAOP:

Learning Algorithm Optimization Platform" on GitHub,

https://github.com/lool01/LAOP, 2019 [last visit 06/01/2019].

[3] K. O. Stanley and R. Miikkulainen, "Evolving Neural

Networks through Augmenting Topologies", Evolutionary

Computation Journal, 10(2):99-127, 2002.

[4] A. Dosovitskiy et al. "CARLA: An Open Urban Driving

Simulator",

http://proceedings.mlr.press/v78/dosovitskiy17a/dosovitskiy17

a.pdf, [last visit 06/01/2019]

[5] Samuel Arzt, "Applying Evolutionary Artificial Neural

Networks on GitHub,

https://github.com/ArztSamuel/Applying_EANNs, [last visit

06/01/2019].

[6] J. Brownlee, "The pole balancing problem - A Benchmark

Control Theory Problem", Technical Report 7-01 July, 2005,

https://pdfs.semanticscholar.org/3dd6/7d8565480ddb5f3c0b4e

a6be7058e77b4172.pdf, [last visit 06/01/2019].

[7] MEMS Journal Automotive sensors and electronics 2015.

http://www.automotivesensors2015.com/[last visit

06/01/2019].

[8] "ESRI Shapefiles technical description", an ESRI white

paper, July, 1998,

https://www.esri.com/library/whitepapers/pdfs/shapefile.pdf,

[last visit 06/01/2019].

0

5

10

15

20

25

30

35

40

45

50

551 2 3 4 5 6 7 8 9 10

O
ve

ra
ll

fi
tn

es
s

Generation

1% chance 3% chance 5% chance

7% chance 9% chance 11% chance

12
17
22
27
32
37
42
47
52

1 2 3 4 5 6 7 8 9 10

O
ve

ra
ll

fi
tn

es
s

Generation

20 cars 50 cars 100 cars

150 cars 200 cars

