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Abstract— Cars are becoming more and more 

intelligent, embedded with a range of sensors to give them 

local perception of their environment (LIDARs, cameras, 

etc.). Trendy companies like Google and Tesla are actively 

testing cars on American roads that can drive without any 

human interaction [1]. Neural networks are the modern 

approach for autonomous cars. However, an inefficient 

neural network algorithm will make the learning process 

slower and will result in a less reliable autonomous vehicle. 

In this paper, we will introduce a platform built in JAVA 

named LAOP (Learning Algorithm Optimization 

Platform) [2] while explaining the solutions we found to 

make it easy for researchers to test and compare their own 

algorithms. Then, we will show how we have integrated a 

natural selection algorithm with a neural network in order 

to improve them. Moreover, we will demonstrate how the 

Fully Connected Neural Network and the NEAT [3] 

(NeuroEvolution of Augmenting Topologies) algorithms 

are implemented in the context of vehicular learning on 

LAOP. Finally, we will display the different results 

extracted from LAOP by tuning several various 

parameters such as the weight mutation chance and the 

car density in the simulation. 

Keywords— Neural networks; evolution; self-driving cars; 

natural selection; platform. 

I. INTRODUCTION 

  Autonomous vehicles could solve most current world 

problems regarding cars. Driven by Artificial Neural Networks 

(ANN), these cars will reduce the amount of traffic and 

accidents related to human error. For this reason, companies 

like Google and Tesla are actively conducting researches and 

innovating in this field. However, research in vehicular neural 

networks seems to be slowed because there is no centralised 

method to easily develop and compare new algorithms. With a 

uniform method to compare them, the research aiming to find 

better learning algorithms would be more efficient. To the best 

to our knowledge, we believe to be the first to develop an 

open-source environment, called LOAP, that lets other people 

implement their algorithms and easily compare them with 

others in a vehicular environment that simulates real world 

conditions. 

   Our contributions can be summarized as follows: (1) We 

introduce an open-source environment named LAOP where 

researchers can easily develop, test and compare their learning 

algorithms; (2) we propose a Genetic Natural Selection 

algorithm, called GNS* to improve the learning experience of 

the algorithms; (3) We implement  several algorithms on 

LAOP such as the NEAT algorithm and the Fully Connected 

Algorithm so that researchers can start to compare their 

algorithms right away and (4) We demonstrate through 

extensive simulation the results we obtained by tuning some 

parameters, like the weight mutation chance, which could 

improve the learning experience. For the purpose of this paper, 

the weight mutation chance is defined as the chance that the 

connection's weight from the neural network changes 

randomly. 

  The second part of the paper provides a brief overview of 

related work and compares them with our platform. In section 

III, the platform will be examined by explaining the simulation 

process and how the cars are learning to avoid obstacles. In 

section IV, we showcase the algorithms added to the platform 

so that researchers can start working immediately by 

comparing their algorithms to ours. Section V shows the 

results we got by simulating the Fully Connected algorithm for 

two scenarios. Finally, conclusions are drawn in Section VI. 

II. COMPARISON WITH OTHER TOOLS 

Other tools already exist to simulate a car driving in an 
environment. For example, CARLA [4] proposes an open-
source driving simulator that allows people to develop 
programs on top of it. It is used by people learning to drive 
and to validate autonomous systems. The force of CARLA 
resides in its alikeness to the real world. However, the problem 
with this simulator is the difficulty to compare multiple 
algorithms. Our proposed platform LAOP provides a quick 
comparison between several algorithms according to different 
parameters. 

   Another tool like our platform is described in [5] proposed 

by S. Arzt. This project demonstrates how to implement an 

ANN coupled with algorithms of natural selection. As in our 

LAOP platform, the author simulates cars and makes them 

learn to avoid walls using artificial networks algorithms. The 

problem with this tool is the difficulty to add your own 

algorithms and to improve them. 



  The pole balancing problem [6] can also be compared with 
our platform since both are used to test and improve learning 
algorithms. The problem with this technique is that is doesn’t 
depict a real-world problem. LAOP offers to improve learning 
algorithms in the context of vehicular mobility and allows to 
test the algorithms with real settings.  

III. OUR PROPOSED PLATFORM LAOP 

  LAOP is a tool that lets people build, test and compare their 

own learning algorithms in a stable environment in the context 

of vehicular learning. Our platform can be used to accelerate 

the development of algorithms and to try to improve the best 

performing ones. The platform is divided into three parts: (A) 

settings, (B) simulation and (C) learning. 

 

A. The settings 
   It is important to be able to easily configure and compare 

multiple variations of the same algorithm, as the goal of the 

platform is to improve them. LAOP lets the user configure 

three types of settings: (1) simulation settings, (2) genetic 

settings and (3) algorithm settings. Simulation settings (1) are 

specific for each simulation batch and contain variables such 

as the car density and the number of sensors. Genetic settings 

(2) are similar to the simulation settings, as they are specific 

for a simulation batch. However, they are responsible for all 

the genetic variables, such as the chance of mutation and the 

chance of having a changed connection weight. The algorithm 

settings (3) are the ones created by the designer of an 

algorithm. They are easily accessible within the code. The 

platform lets the designer choose from the beginning the 

algorithms to compare and their settings. This way, the user 

can compare the same algorithms multiple times with those 

settings modified and find the settings that perform best. As an 

example, we tested multiple times the Fully Connected 

Algorithm with different mutation chances to try to find the 

optimal configuration.   

 

B. The simulation batches 

 

 

Fig. 1:  A simulation batch is created for every compared 

algorithm (Fully Connected and Neat algorithms). 

  LAOP separates the update loop in three layers: (1) 

simulation batches, (2) simulations and (3) generations, as 

illustrated in Fig. 1. When the user runs one or multiple 

algorithms on the platform, a simulation batch (1) is created 

for every pair of learning algorithms and settings chosen. 

There could be two of the same learning algorithms with 

different settings in the two different batches. The number of 

generations in each simulation is determined by the simulation 

settings. Fig. 1 shows that the first batch runs simulations for 

the Fully Connected algorithm and the second batch runs 

simulations for the NEAT algorithm. 

   The role of the simulation batch (1) is to coordinate multiple 

simulations. It tells the simulations which algorithms and 

settings are required to initiate the cars. All simulations under 

a specific batch run the same settings and algorithms. The 

simulations (2) compute everything related to moving the cars 

according to the algorithm and changing its state when 

colliding with walls. The generations (3) are used to keep track 

of the average, the median, the highest and the lowest 

performing car. We use a function called fitness function to 

determine the performance of a car. A generation ends when 

all the cars hit an obstacle or when the time limit for a 

generation is reached. The information contained in the 

generations is saved to be analysed. The separation of the 

generation allows to easily store and retrieve the performance 

data and easily populate the graphs.  

   The different simulations let us run multiple times the same 

algorithms and settings. There can be errors related to 

randomness when dealing with neural networks and genetic 

algorithm. The same algorithms are tested multiple times with 

the same settings in order to have an average performance 

score, thus reducing the error related to chance. For example, 

one simulation might be performing better than another only 

because of the initial random values, and not because it is 

more efficient. Having multiple simulations solves this 

problem. 

1)  The simulation and the environment 

 

  A simulation contains two important elements: the 

environment and the cars. When a simulation runs, the cars are 

updated according to the environment and the simulation 

batch’s algorithm (see section B.2 for more details).  

  The environment has also two important elements: the 

starting location and the obstacles. The starting point is where 

the cars spawns. The obstacles are lines that act like walls. If a 

car hits one of those, it is eliminated. An eliminated car is not 

updated anymore. When the generation ends, the data about all 

the cars get stored in the generation. 
   LAOP makes it easy for algorithm developers to create their 
own environment. The platform comes with a built-in map 
editor. It offers different tools to help create an environment 
with obstacles. The ability to create maps is useful to test how 
algorithms perform in a different context. For example, by 
testing multiple maps, we found that only relying on the 
maximum distance from the start is not the best option to 
compute the fitness score. In the future, the platform will be 
able to import a shapefile [8] containing real-world road 
information. This lets the algorithm test its capabilities in real-
world environments. 

2) The car 
  While a simulation is running, rectangles with different 
colors will move on the screen. These are the cars being 
updated by the simulation. This section describes how the cars 
retrieve information from their environment and then move 



through the environment. 

  The car has three components: (1) the proximity sensors, (2) 

the ANN and (3) the wheels. Each component is represented in 

Fig. 2.  

  The proximity sensors (1) let the car gather information about 

its environment. The user determines the number of car 

sensors in the settings. The proximity sensors provide the 

distance in a given line between the car and an obstacle. The 

result is then normalized to a value between 0 and 1. A value 

of 1 indicates that no wall is detected in the direction of the 

sensor; the more the value approaches 0, the more the obstacle 

is approaching the car.  

 

 Fig. 2. A car with its different elements. The sensors give 
information to the ANN that determines the values of the 
wheels. 

  The wheels (3) control the direction in which the car will go. 
They can each receive a value between 0 and 1 and this will 
determine the force of the wheel. If the value received on the 
right wheel is greater than the one on the left, the car will go 
left, and vice versa. If the value of the two wheels are the 
same, the car will go in a straight line.  

  The ANN (2) makes the link between the sensors (1) and the 
wheels (3). It is the algorithm given by the simulation batch. It 
takes as inputs the values of the different sensors and outputs 
the values of the two back wheels. - in other words, on every 
update of the simulation, the car’s ANN computes the speed at 
which each wheel should go based on the value of each of its 
sensors. 

   In the scenarios we considered, we only used proximity 
sensors. In the future, we plan on adding more types of 
sensors. According to the MEMS Journal [7], vehicles have 
between 60 and 100 sensors on board. This number is 
expected to increase to an average of 200 sensors. We could 
add a temperature, a light, a pressure, an acceleration and a 
speed sensor to make the car more alert of its environment. 

C. Making the cars learn with GNS* 

  When all the cars hit an obstacle or when the simulation time 
exceeds the time in the settings, the generation finishes. Then, 
an algorithm is used to modify the cars and make them learn. 

To achieve this, we created the Genetic Natural Selection* 
algorithm (GNS*). This algorithm was inspired by the concept 
of natural selection. It takes a set of cars as inputs and returns 
a modified one. The GNS* algorithm works in three phases: 
(1) the attribution of fitness; (2) the elimination process and 
(3) the repopulation process as displayed in the Fig. 3. This 
algorithm is used each time a generation is finished. Our 
platform lets the user easily change this algorithm in the code 
if desired. 

Fig. 3: The process of simulating consists of three phases: (1) the 

evaluation, (2) the selection and (3) the repopulation. 

 

1)    The fitness function 

 

  To be able to make the difference between well-performing 

cars and the others, we use a function called the fitness 

function (Eq. 1). We deduced this formula through extensive 

simulations. It determines how well the car performed. The 

fitness function can be easily changed within our platform to 

best suit another algorithm. For our scenarios, we proposed 

this fitness function:  

𝑓 = 𝑥 + 𝑑 (1) 

  Where 𝑓 is the fitness of the car, 𝑥 is the maximum distance 

from the start the car (in pixels) and 𝑑 is the total distance 

traveled by the car (also in pixels). The maximum distance is 

defined as the maximum distance between the start and the car 

in a straight line. 

 
 

Fig. 4: If we rely only on the maximum distance from the start, the 

cars would get stuck in the yellow area since they would have a better 

fitness there than those reaching the end. 



   Our goal with this formula is to give a higher fitness to the 

cars going the furthest along the “path”. If we only rely on 

𝑓 = 𝑥, the car will get stuck because it attains the maximum 

value of x when it reaches the furthest point from the map and 

not by going the furthest on the path. Figure 4 shows this 

problem. Represented with the red line is the path that the cars 

take if we only rely on the maximum distance from the start. In 

green is the path that the cars take if we add the total distance 

traveled to the equation. 

 

2) The elimination algorithm 
 

  The goal of this algorithm is to eliminate the worst 
performing cars and keep the best ones. After the attribution of 
fitness, this algorithm uses a weighted random distribution 
algorithm to eliminate the worst performing cars. Our 
implementation of the weighted random distribution algorithm 
is as follows: we first sort the array of cars depending on their 
fitness score, then the algorithm gives each car a weight 
depending on its index in the sorted list of cars. It assigns a 
weight of 99.0 to the worst car and a weight of 0.5 to the best 
one. The weights of the cars in between are determined by a 
reverse exponential function. Then, the algorithm generates a 
random floating-point number between 1 and the total of all 
the weights. For each car, it removes its weight from the 
randomly chosen number and this car is removed from the 
array. This algorithm is repeated until the population size is 
half the size of the initial population. Fig. 5 shows that even if 
a car performs poorly in the simulation, it still has a chance to 
survive the elimination process. 

 

Fig 5. The distribution of the cars that survived the 
elimination process (orange) versus the cars before the 
elimination process (blue). 

  We use this algorithm instead of removing the worst half 
because even a less performing car might be useful for the 
learning process. It might have some traits that, when coupled 
with other cars, will result in a better performing neural 
network. However, the weighted random distribution allows    
us to have more chance to keep the best performing cars as 
shown in Fig. 5.  

 

3) The repopulation process 

 
  When the elimination process ends, the GNS* algorithm 
populates the array with new cars having similar traits with the 
ones that survived. To create a new car from two parents, the 
GNS* algorithm is as follows: it first choses two cars 
randomly in the surviving cars population. Then, in the case of 
the Fully Connected Algorithm, a new neural network is 
created with the same topology of its parents. It iterates 
through each of its connections and it takes the weight from a 
randomly chosen parent at the same location in the topology. 
At the end of the reproduction, the child has weights coming 
randomly from both of its parents.  

  When the set of cars has been repopulated, the simulation 
then runs the newly created generation of cars. The process of 
simulation, selection and repopulation is repeated until the 
maximum number of generations specified in the settings is 
reached. The process is represented in Fig. 3.   

IV. PROPOSED ALGORITHMS 

   The LAOP platform comes with two premade algorithms for 
the user to compare against. We offer a version of a fully 
connected neural network algorithm and an implementation of 
the NEAT algorithm proposed by Kenneth O. Stanley and 
Risto Miikkulainen [3]. We also made it possible and easy for 
developers to add their own algorithm to the LAOP platform. 
This section describes how we implemented the fully 
connected and the NEAT algorithm in our platform and how 
to add an algorithm. 

A. The fully connected Algorithm   

         

   Fig. 6: A neural network contains multiple layers. The first        
one, in red, represents the nodes receiving the information 
from its environment. The last layer, in blue, gives it outputs 
to the car’s wheels. 

   A fully connected neural network, as represented in Fig. 6, is 
a network starting with a fixed number of layers each 
containing a fixed number of neurons. In this type of neural 
network, each node is connected to every node in the next 
layer. To compute the value at a specific neuron, we do the 
sum of the value of each neuron (𝑥𝑖) pointing to this specific 
neuron, multiplied by the weight of the connection (𝑤𝑖) 
linking the two neurons. Then we normalise this value 
according to an activation function (𝜑). Here, we used the 
sigmoid function (3). The nodes in the first layer is not 
calculated, as they receive their input from the environment. In 
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our case, the inputs were the value of each proximity sensors.  

𝑦 = 𝑓(𝑥, 𝑤) =  𝜑 (∑ 𝑤𝑖𝑥𝑖

𝑚

𝑖=1

) (2) 

𝜑(𝑥) =
1

1 + 𝑒−𝑥
 (3) 

  In equation 2, 𝑦 is the computed value of the node. 𝑥𝑖 is the 
value of the previous layer at the position 𝑖. 𝑤𝑖  is the value of 
the connection at the position 𝑖. 𝑚 is the number of neurons in 
the previous layer. 𝜑 is the activation function that outputs a 
value between 0 and 1. The activation function we used is the 
sigmoid function (3). 

  We compute the value of all the nodes of the neural network. 
Then, we extract the values of each node in the last layer and 
use them as inputs for the wheels.  

B. The Neat algorithm 

  The problem with the Fully Connected neural network 
algorithm is the fixed topology throughout the simulation. It is 
limiting the neural network to find a solution with the best 
arrangement of weights. If the topology is altered throughout 
the simulation, the network is not only able to find the best 
weight arrangement, but also the best topology. For example, a 
network with 3 layers might be performing better than a 
network with 4 layers. If the number of layers is fixed, two 
simulations must be run to test the 3-layer option and the 4-
layer option. This optimal neural network could be found in 
just one run with a variable topology. 

 

Fig. 7: In the NEAT algorithm, the network’s nodes are 
not connected to all the nodes in the next layers. New 
connections are created and removed between generations. 

  The NEAT algorithm resolves this problem as its topology is 
variable. As the Fully Connected neural network, the NEAT 
network has an input layer and an output layer. The difference 
resides in the fact that the topology of a network using NEAT 
is not fixed, as shown in Fig. 7. In its simplest form, the 
algorithm has only one connection going from a random input 
to a random output. It evolves throughout the simulation by 
randomly creating new nodes and connecting them to the 
network. The evolution of the topology in NEAT makes it 
possible to find other solutions that can be hidden in the 
topology. 

C. Creating an algorithm in LOAP 

  We built our platform for anybody (researcher, student, etc...) 

to easily add their own algorithms. We designed an easy-to-
use abstract class called the Neural Network that can be used 
to create a Learning Algorithm. Once extended and added to 
the array of current algorithms, the new class will control the 
behaviour of the cars. Two methods are required to be 
redefined: feedForward() and crossOver() as shown in 
diagram 1. The feedForward() method is where the 
computation happens. This function retrieves the value of the 
different Transmitters (the sensors) and assign a value to the 
Receivers (the wheels).  

  For example, the fully connected algorithm takes the values 
of all the sensors (the transmitters), puts them in each of the 
input nodes, activates all the layers and applies the value of the 
two output nodes to the two back wheels of the car (the 
receivers). 

V.  SIMULATIONS RESULTS 

    In this section, we compare the Fully Connected Algorithm 
with different parameters to see their effects on the learning 
performance of the algorithm. We evaluated (1) the impact of 
changing the car density and (2) the connection mutation 
chance.  

Table I. Parameters of the simulation 

Parameter Value 

Number of simulations 10 

Number of generations 10 

Number of sensors 7 

Chance of weight 
mutation 

1%, 3%, 5%, 7%, 9% and 
11% 

Car density 20, 50, 100, 150 and 200 

 

5.1 Simulations configuration 

  Table I shows the different settings we used in our 
experiments and the variable settings for our two scenarios. 
We decided to run 10 simulations per algorithm variation to 
reduce the error related to randomness. When we test the 
different weight mutation chance, we keep the car density at 
25. When we vary the car density, we keep the chance of 
weight mutation to 9%. 

  In the first scenario, we highlighted the impact of changing 
the chance of a connection weight, replacing it by a random 
value during the mutation process. In Fig. 8, each line 
represents the Fully Connected algorithm with a different 
weight modification chance. 
   
  Through extensive simulations, we conclude that the Fully 
Connected algorithm performs better when its connection 
weights have 9% and 11% chance of getting modified. We 



expect that going higher than a certain threshold would result 
in a performance drop because of the higher amount of 
randomness. 

 

Fig 8. Scenario 1: How the performance of the       Fully 
Connected Algorithm is influenced by the weight 
modification chance. 

 

Fig 9. Scenario 2: How the car density affects the 
performance of the Fully Connected algorithm. 

      In the second scenario, we investigated a possible 
correlation between the car density and the performance of the 
Fully Connected algorithm. Fig. 9 shows the evolution of the 
average fitness for each algorithm variation tested. 

  We cannot conclude that the car density influences the 
performance of the algorithm, but we note that it has an impact 
on the smoothness of the curve. The blue line is very shattered 
and has less cars, while the orange one with 200 cars has a 
very smooth line. This is probably due to the stability of the 
population.  

VI.  CONCLUSION AND FUTURE WORK 

   In this paper, we offer a platform that makes it easy for 
anybody to test and compare their learning algorithms. The 
platform uses learning algorithms with a modified genetic 
natural selection algorithm named GNS* to train them. 
Multiple algorithms are built in the platform, such as the fully 
connected ANN and a version of the NEAT algorithm. 
Through extensive simulation, we found out that our platform 
LOAP could be used to better understand learning algorithms 
and to find better settings. For example, we could use LAOP 
to find the optimal number of proximity sensors.  
    
  In the future, the platform will have major improvements, 
like a better respect of the real-world conditions, more sensors, 
the ability to import a shapefile and a web platform where 
users can share their algorithms. 
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