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Abstract—Transportation is a vastly developed research 
field that tries to optimize humans’ safety in everyday life. 
Recently, autonomous vehicles are being thoroughly developed 
by a lot of companies such as Uber[1] and Tesla[2], which will 
improve safety on the roads. These vehicles are using artificial 
intelligence to correctly interact with their environment. First, 
we developed a Java program called “ARIBAN” which 
provides algorithms for recognition and classification of traffic 
signs with Multi-Layer Perceptron Neural Networks (MLPNN). 
Second, we use back propagation algorithm in a supervised 
manner to establish the network. Third, the neural networks 
are trained and used with a large amount of traffic signs. 
Finally, the post-processing combines the results to make a 
recognition decision. Eventually, we have tested our trained 
network with more than 62 types of traffic signs. Experimental 
results have demonstrated the effectiveness of the proposed 
system. Furthermore, the proposed system was deployed within 
an architecture for autonomous driving. 
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I.  INTRODUCTION  
   Artificial intelligence (AI) and deep learning have been becoming 
increasingly popular in the last years as more and more ways to use 
them are discovered. Traffic Sign Recognition (TSR) is becoming 
an essential part in Driver Assistance Systems and Automated 
Driving (ADAS) [3]. Nevertheless, different viewpoints, traffic sign 
sizes, illuminations and weather conditions, etc. make the TSR task 
harder. Indeed, existing works stress the TSR decision because of 
the large variations in visual appearance of traffic sign images. 
Some studies used optical recognition [4] to classify images using 
neural networks. Optical recognition is very useful in the context of 
self-driving cars, as they need to be aware of the presence of nearby 
obstacles and traffic signs, to be both secure and comply with 
driving laws. Even if the GPS technology already exists, which can 
identify the location of traffic signs; it could be useful to use AI in 
the cases where new traffic signs just were implemented, and to 
make a double verification of the presence of the traffic signs. 

 The entire image recognition system is divided into two phases 
such as training and recognition phase. Both phases include (a) 
image pre-processing (b) and matrix extraction. Training and 
recognition phase also include training of the classifier (neuronal 
network) and its simulation. (a) Pre-processing involves the 
cropping of the image to get the traffic sign located in the center of 

the image. (b) After the cropping, the image matrix is normalized 
into a column matrix containing the values of all pixels of the 
cropped traffic sign. Then, the normalized image matrix is fed to 
the neuronal network. It consists of a varying amount of input 
neurons and as many output neurons as the amount of traffic signs 
the network was made is shown in Fig. 1.  

  
Fig 1. ARIBAN platform 

Our contributions, in this paper, summarized as follows: (1) We 
introduce our Java platform, called “ARIBAN” [5], which provides 
many analysis tools to identify and classify road signs; (2) We 
propose Multi-Layer Perceptron Neural Networks (MLPNN), 
which can be trained and used in the context of image recognition, 
notably with traffic signs; (3) We enhance the use of two main 
algorithms: Feed forward propagation (FFPA) and back 
propagation (BPA) to detect and classify traffic signs; (4) We 
evaluate the neural network with different types of image to make a 
recognition decision; (5) We take into account multiple parameters 
for the training phase such as the number of iterations, the learning 
rate, the number of images by group involved in the same BPA; (6) 
We introduce an autonomous driving use case in which we 
highlight the exchange information about traffic sign recognition 
through IoV cooperative system. 

 The remainder of the paper is organized as follows. Section II 
reviews the related works in traffic sign detection and classification. 
Then, section III provides information about the training data used 
during the learning of our neural network and describes the way the 
platform operates. In section IV, experiments are conducted to 
evaluate the ARIBAN algorithms. Finally, conclusions are drawn in 
Section V. 



II. RELATED WORK 

The new challenges in intelligent transport require more 
research effort from different perspectives to optimize humans’ 
safety life. Studies in literature are specifically focusing on how 
autonomous vehicles could avoid obstacles. However, TSR is a 
major issue to recognize and avoid nearby obstacles. 

Tesla Autopilot [6-7] is an advanced driver-assistance system 
using artificial intelligence to help the driver reach his destination 
safely. This AI can steer the car, regulate its speed, change lanes 
and park without any driver input. It uses eight cameras, twelve 
ultrasonic sensors and a radar to be able to recognize objects under 
any circumstances so the AI can make the car avoid them. The AI 
uses machine learning algorithms to be able to improve its 
efficiency through time. As our ARIBAN platform enforced by 
FFPA and BPA, it uses many data examples to teach the AI. When 
drivers use Tesla Autopilot, the system sends data collected to Tesla 
so the AI always learn more [8]. In the future, cars using Tesla 
Autopilot will be completely autonomous, being driverless vehicles, 
using an advanced artificial intelligence. Popular or specially 
designed schemes include two phases: Detection and Classification 
to recognize traffic signs in an image. There are many researchers 
working on this challenging task to propose solutions. However, it 
is not easy to compare their methods until the release of the German 
TSR Benchmark [9] and KUL Belgium Traffic Sign Dataset [10]. 
Proposed methods, to solve detection and classification issues, are 
reviewed as follows: 

A. Traffic sign detection [11-17] 

Because of the harsh environment conditions, the images 
obtained by the camera are with low quality. Captured image pre-
processing can be used to improve the traffic sign regions and to 
make it easier for subsequent steps. In order to have more distinct 
signs, the commonly way is transforming images into a new color 
space.  Several color spaces schemes are used, for example Hue 
Saturation Intensity [11], improved Hue Saturation Lightness [12], 
normalized color space [13], and histogram of oriented gradients 
(HOG) [14]. Additionally, using machine learning [15], authors 
proposed a color probability model to improve the main color of the 
signs while removing the background regions. Authors trained 
Support Vector Machine (SVM) classifier [16-17] to map each 
pixel in the images to a gray value with higher score in the traffic 
sign. In previous traffic sign detection works, threshold based 
methods are used [11]. Some other methods like Convolutional 
Neural Network (CNN) [16] were also used whereas in this paper 
we used MLPNN. 

B. Traffic sign classification[18-25] 

Traditional methods for classification include feature extraction and 
classifier training. Numerous studies enforce SVM classifier with 
Multi-Layer Perceptron (MLP) with radial histogram features [19] 
in opposite to our ARIBAN which uses classical MLP. Other 
combinations with SVM are proposed as HOG features [14], K-d 
trees and Random Forests with Distance Transforms and HOG 
features [18], Artificial Neutral Network with Rotation Invariant 
Binary Pattern based features [20], local image permutation interval 
descriptor [21]. In [22], three different features representations are 
extracted: (1) dense scale-invariant feature transform, (2) HOG and 
(3) Local binary patterns features. Then they were implemented 
with locality-constraint linear coding. After, the results were 
generated by spatial pyramid pooling. These features were 
combined as the final features of a traffic sign, using SVM as the 
classifier. In [23], Multi-column CNNs, were proposed to classify 
traffic signs. They train multiple CNNs with different data pre-
processing and weight initialization. However, in [24], local and 

global features in CNN were combined to recognize traffic signs. 
Compared to [23], an enhanced version of cross entropy loss [25], 
used in training CNN, obtains better results. Authors in [28] 
proposed a new TSR approach for intelligent vehicles. The 
suggested road sign recognition involves three steps; firstly, the 
input image mapped from the Cartesian coordinate system to the 
log-polar one. Secondly, from the image represented in the log-
polar coordinate system the HOG, the local binary pattern (LBP) 
and local self-similarity characteristics (LSS) are calculated. 
Thirdly, their system performs classification using the random 
forest classifier. They tested their solution on the German Traffic 
Sign Recognition Benchmark dataset.  

We conclude constructing well-designed network architecture 
and training a practical model are still challenging tasks, even 
though CNN is proved to be efficient in image classification. In the 
next section, we present our MLPNN integrated in ARIBAN 
platform, which recognize and classify traffic signs in images. 

C. Traffic sign Recognition for Autonomous Driving [29-30] 

 Numerous real-time systems including localization, planning, 
environment perception, and control should be implemented to 
accomplish autonomous tasks of a vehicle in urban situations. 
Autonomous vehicles today depend on the constructed road maps to 
provide the location of all traffic signs. To automate this process, 
authors in [29] built a laser-based generic sign detector that locate 
the orientation and the position of all signs surrounding the 
autonomous vehicle. Furthermore, they implemented a direction 
invariant classifier that differentiates stop signs from nonstop signs, 
even when viewed from the back or side. In their system, they used 
Haar-type filters with a sliding window to fix the differential along 
the edges of the target sign. According to the authors, their system 
detect signs at 89% precision. In [31] authors introduced an 
Advanced Driver-Assistance Systems (ADAS) as a path toward 
autonomous vehicles. They confirm that many ADASs support 
traffic sign detection. The common use case is the identification of 
the speed limit on the road. An ADAS would alert the driver in case 
of the vehicle speed is over the limit.  

Sign recognition is a primordial task of autonomous vehicles. Any 
misrecognition of traffic signs can lead to disastrous accident. In 
[30], authors examined security attacks against TSR systems for 
Deceiving Autonomous caRs with Toxic Signs (we call the 
proposed attacks DARTS). They demonstrated a wide range of 
attacks on TSR. They proposed two methods to create toxic signs. 
The first one-named Out-of-Distribution attacks allow an adversary 
to convert any sign or logo into a targeted adversarial example. The 
second method known as The Lenticular Printing attack allows an 
adversary to embed a potentially dangerous traffic sign into a safe 
one, with no access to the internals of the classifier. Our results 
demonstrate that the proposed attacks are successful under both 
settings and threat models. They demonstrated the effectiveness of 
attacks virtual and real-world settings. 

III. THE ARIBAN PLATFORM 

A. Platform’s Input 

The kind of images which can be used to train or test neural 
networks on our platform are of the .ppm, .jpg or .png format, of 
any sizes. They will be scaled to fit to the neural network’s 
specifications.  

To train and test the neural networks on our platform, we used 
the KUL Belgium Traffic Sign Dataset [10]. They consist of 51 
different traffic signs, each divided in two categories: training and 
testing. While the training images are to be used to train the neural 
network, the testing images are used to test its efficiency. The 



reason we want the testing images to be different than the training 
images is that we need to know whether or not the neural network is 
able to identify any traffic sign, and not just the ones that were used 
to train it. It is also important to note that the neural networks can 
be saved and opened for later uses. 

B. ARIBAN’s analysis process 

1) The neural network creation: The first step is to create a 
neural network with the desired settings. The types of traffic signs 
that will be analyzed need to be specified, as well as the number of 
hidden layers, the amount of neurons in those hidden layers and the 
size of the pictures the neural network can analyze. The size of 
which the pictures that will be fed to the neural network will be 
resized needs to be defined, as it will change the amount of neurons 
in the input layer. The activation function of every layer also needs 
to be specified, although the function for the last layer is already set 
to sigmoid, as we want the neural network to produce a number 
between 0 and 1, 1 being the most certain about a certain type of 
traffic sign and 0 being the least. The channels of color in which the 
image fed to the neural network will be decomposed can also be 
chosen at this point. 

 
2) The training phase: The second step after creating the 

neural network is training it. When starting a training session, many 
parameters need to be specified. First of all, whether to use the 
stochastic method and, if the option was chosen, how many training 
images are used in every set. Second of all, the location of the 
images used during the training and their types need to be specified, 
whether by identifying folders containing a certain type or 
individual images. Finally, the number of epochs needs to be 
specified: how many times the network will effectuate the 
backpropagation technique? 

 
3) The testing phase: After training the neural network, it is 

important to recognize whether or not it has learned correctly. The 
testing phase has very few parameters to define, which are very 
similar to the ones in the training phase. Only the location and the 
types of the pictures that will be used to test the neural network 
need to be specified. After the testing process is done, the program 
will output the percentage that the neural network guessed 
correctly. 
 

4) Analysis of a more complex image: This phase consists in 
analyzing a single image which can contain a traffic sign. The 
image that will be analyzed needs to be selected, and then the 
program starts the process to find the presence of traffic signs. The 
program will then tell the user which traffic sign was found in the 
image. 
 

C. The neural network’s    

   Neural networks used in our program are multilayer perceptron 
composed with an input layer, one or more hidden (intermediate) 
layers and an output layer. Each layer is composed with neurons, 
the base unit of the neural network, that is defined by a real number 
and an activation function, described later. The goal of a neural 
network is to transform input values into output values. In our case, 
each input value corresponds to the RGB value of a pixel in an 
image, and each output value correspond to a different traffic sign. 
The goal of that neural network is to guess the presence of traffic 
signs in the analyzed image. The value of an output neuron 
corresponds to the degree of certainty of presence of the traffic sign 
represented by that neuron in the image. Each neuron from a layer 
is connected to each neuron in the next layer with a real number, 
called weight. Each weight has a random value determined at the 

initiation of the neural network. Also, each layer can have an extra 
neuron, called biais that will affect the value of the neurons in the 
next layer. Its goal is to improve the precision of the algorithm by 
having an unrelated influence in the calculation to the input values. 

 
1)   Feed forward propagation algorithm 

      The first algorithm used in a multilayer perceptron is the feed 
forward propagation algorithm, called FFPA. This is the main 
algorithm of the neural network, its goal is to map the input values 
into the output values. Its first step is to determine the values of the 
neuron of the first hidden layer. First, each neuron of the input layer 
sends its value into each neuron of the next layer, multiplied by the 
value of the weight. Each neuron of the next layer then takes 
multiple values, one for each neuron of the first layer, and does the 
sum of each of the values. This new value is sent into the activation 
function related to the neuron that will transform the value into 
another value, which is the final value of that neuron. This process 
is repeated until the last layer to determine the value of each neuron 
in the network. 
There are various types of activation functions, the sigmoid 
function, the linear function, the hyperbolic tangent function and 
finally, the hard limiting function. Table 1 illustrates the equation of 
the different activation function. 
                                  
                                TABLE 1: Activation functions 

Function Name Equation of the activation function 

Sigmoid  

Linear function  

Hyperbolic 
tangent  

 

Hard limiting  
 

    To simplify FFPA, it is possible to use matrices operations. 
Indeed, by placing the input values in a column matrix, and the 
weights in a normal matrix, the values of the next layer are given by 
the resulting matrix of the multiplication of these two matrices 
where each value has passed into the activation function. The 
values of the neurons of the next layer are described with the next 
function: 

 (1) 

Where  H is the Matrix of the values of the next layer, 
σ

 is the 
Activation function of the next layer, W is the Matrix of the 
weights, X  is the Column matrix of the values of the current layer 
and B  is the Matrix of the biais neuron of the current layer 
     
  With this algorithm, the neural network is able to guess the 
presence of traffic signs in the image. However, since the weights 
values are randomly determined at the initiation, the neural network 
needs to change these weights depending on the traffic signs to 
analyze to be able to do good recognition. To do this, the network 
needs to compare the results that it predicted with the FFPA with 
real results. The difference between the objective and the predicted 
values gives the errors of each output neuron of the network, 
describing the precision of the algorithm. To have an estimation of 
this precision, the algorithm does the average of each squared error, 
which gives the cost function of the network. 
The cost function is described as follows:  



 

     (2) 

Where C(t,y) is the Cost function, N: Number of neurons in the 
layer, t is theTarget value of the neuron and y is the Predicted value 
of the neuron. 
 Since the goal of neural network is to recognize the presence of 
traffic signs with the fewest mistakes possible, our objective is to 
minimize this cost function. To do this, it is important to know that 
the results given by the algorithm are based on the weights between 
the neurons of the network. Our next step is to find the most 
appropriate values for these weights to recognize correctly traffic 
signs in an image. In order to do modify these values, so to 
minimize the cost function and improve the precision of the neural 
network, it needs a second algorithm called backpropagation 
algorithm.  

 
  

 
 
 
 
 
 
 
 
 
 

 
Fig.2.Testing phase       

In our program, the FFPA is used in every step: during the 
training, the testing and the analysis. It is particularly used in the 
testing and the analysis parts, where the neural network tries to 
identify the traffic sign present in the image. In our application, 
during the testing part as shown in Fig. 2, it is possible to choose 
the images that will be used to test the efficiency of the neural 
network. 

 
                                

                           

 

 

 

 

 

Fig. 3. Analysis phase 

During the analysis part, it is possible to choose the image to 
analyze with the present neural network. The application will then 
tell the user about the identification made by the neural network. 
(Fig.3). 

2) Back propagation algorithm 
The second algorithm is named back propagation (BPA). Its 

goal is to train the neural network, to improve its precision 
depending on the traffic signs that need to be recognized by 
minimizing the cost function. To minimize the error of the network, 
it needs to find the adapted weights’ values to classify correctly the 
image give in input. To do this, it needs to use the gradient descent 

algorithm (GDA), a mathematical algorithm that minimize a 
function using the gradient vector, a vector that describes the 
directional derivative of a multivariable function oriented in the 
direction of the maximization of the function at a specific point.  
To determine the gradient vector used in this algorithm, it is 
necessary to find the different variables present in the complete 
neural network that have an impact on the results. 
     In our case, the gradient is based on the values of the neurons, on 
the errors of the network, on the derivative of the activation 
functions and on the learning rate, which describe the learning 
speed of the network. 
The function describing the variation of the values of the weights in 
the network is: 

 (3) 

Where  is the Column matrix of the difference between the 
actual value of the weight and the new value of the weight, n is the 
Learning rate, E is the Column matrix of the errors of the actual 

layer,  is the Derivative of the activation function, 

And  is the Transposed column matrix of the neuron values of 
the actual layer. 

  The GDA consists of following the inverse direction of the 
gradient vector since, by definition, this vector seeks the 
maximization of the function, and we want the inverse of the vector 
to minimize the function. After following it for a short distance, it 
needs to be recalculated to find the new direction of that vector that 
will minimize the function. With this first step, the values of the 
weights will be changed, which will reduce the cost function, and 
improve the precision of the network. To find the relative minimum 
of the cost function, this step needs to be repeated many times, until 
the function is minimized. It is possible to compare this algorithm 
with the descent of a hill to its hollow by taking the shortest way. 

    It is essential to recalculate the gradient vector after following it 
for a short distance in is inverse direction, because this vector seeks 
to minimize the function at the point of the function where it’s 
calculated, and only at that point. The inverse gradient vector does 
not minimize the function anymore when it is far from its origin 
point. By travelling short distances in its opposite direction and by 
then recalculating it, we make sure that it’s always heading towards 
the relative minimum of the function. 

    To apply GDA in our neural network, we start with the output 
values and calculate the values that minimize the error with the 
weights between the output layer and the last hidden layer using the 
gradient formula that calculates the change in the weight values. 
After modifying these first weights, the algorithm does the same 
step with the weights located between the last hidden layer and the 
layer that precedes it. That step is repeated until every weight has 
changed their values, which will have minimized a little bit the cost 
function. This algorithm is called BPA, because it travels the neural 
network in the opposite direction. 

After travelling the neural network one time in its opposite 
direction, the training method will reproduce these two algorithms 
with another image, which will give another predicted result with 
the FFPA. The BPA will then minimize a little bit more the cost 
function, which will improve the precision of the neural network. 
After doing these steps with thousands of example images that 
contains every type of traffic sign, the BPA should have succeeded 
to reach the minimum of the cost function, which means that it will 
do minimal errors, and therefore will have learned to recognize 
traffic signs in an image with a good accuracy. 



 

 
         

 

 

  

 

 

Fig.4.  Training Phase 

    These algorithms are all used while training the neural network 
as shown in Fig.4., which can be created in our application, where it 
is possible to choose the images used for the training, the number of 
iterations, which is the number of times we train the neural network 
with one group of images, the learning rate, which is the rate that 
determines the speed of the training and finally, the stochastic size, 
which determines the number of images used in one group of 
images.    

IV. PLATFORM RESULTS 

A. Simulation Input  

    To obtain the results in the next subsection, the following input 
parameters were specified: the learning rate (we picked two 
exponentially relative lower values: LR=0.01 and LR=0.02), the 
number of iterations (Ite=100 and Ite=150), the number of images 
by group (we took of constant value of 50), and the number of 
hidden layers (from 2 to 5 layers). The main purpose is to 
determinate the best parameters that increase the recognition 
accuracy and reduce the processing time. Different training and 
testing traffic sign images (TS) were selected for making 
performance evaluation (e.g., stop sign, parking sign, speed limit 
sign, etc.). 

B. Generated Results 
    The experiments were repeated twice on the cited database, using 
a network with two hidden layers that have 12 neurons each. 
Recognition accuracy averages are summarized in Table 2.  
 

TABLE 2:   Recognition accuracy 

TS class number LR: 0.01 
Ite: 100 

LR: 0.02 
Ite: 100 

LR: 0.01 
Ite: 150 

2 (Red circle/Blue circle) 99.29% 98.87% 99.42% 

3 (Red circle/Blue 
circle/Triangle) 

99.08% 98.30% 99.22% 

4 (Stop/Parking/ 
Triangle/Red circle) 

95.65% 94.22% 95.79% 

5 (Stop/Parking/ 
Triangle/Red circle/Blue 
circle) 

93.11% 91.12% 93.20% 

6 (Stop/Parking/ 
Triangle/Red circle/Blue 
circle/Speed limit) 

90.95% 89.03% 91.04% 

     
We notice that we can reach good accuracy results as we train the 
established network with more number of iterations. Furthermore, a 
low learning rate can make the training phase more effective (that 
refers to the shallow weights updates of the network). However, it 
will increase the training time. 

C. Neural network results 
 
   As aforementioned, we have tested the accuracy rate with a 
different number of hidden layers (HL: varying from 3 to 5 layers, 
with 12 neurons in each layer) and using the same traffic sign 
images as above. We used fixed values for learning rate and 
iterations number parameters (LR=0.01, Ite=100). The results are 
shown below (Table 3). 
  According to the table, we note that increasing the number of 
hidden layers up from 2 to 5 layers has enhanced the accuracy rate. 
 

D. Autonomous Driving use case: TSR 
  
   The self-driving vehicle is comprised of a full suite of input 
components (e.g., sensors), Electronic Control Units (ECUs), 
actuators, intra-vehicular networks (e.g., Controller Area Network 
(CAN) [26], Local Interconnect Network (LIN), Ethernet, etc.), and 
advanced specific sub-systems to perform its functional blocks such 
as TSR. Sharing information about traffic signs among autonomous 
vehicles like no-overtaking sign or speed limit sign is significant for 
safe guidance and navigation. Accordingly, this subsection presents 
a traffic sign information exchange for autonomous driving within 
an IoV cooperative system. The data flow can be accomplished 
with an In-Car Gateway communication as proposed in our 
previous work [27]. The overall system architecture is shown in 
Fig. 5. 

TABLE 3:  Recognition accuracy 

TS  Class 
number 

HL number: 3 
LR: 0.01 
Ite: 100  

HL number: 4 
LR: 0.01 
Ite: 100 

HL number: 
5 
LR: 0.01 
Ite: 100 

2 TSC 99.42% 99.50% 99.67% 

3 TSC 99.15% 99.24% 99.36% 

4 TSC 95.71% 95.79% 95.88% 

5 TSC 93.18% 93.25% 93.32% 

6 TSC 91% 91.05% 91.10% 

7 TSC 87.73% 87.78% 89.80% 

 

 
Fig.5. TSR environment architecture 

  
 As depicted, the driverless car zone involves a mounted In-
Car Gateway device which will serve as the coordinator 
between the different collaboration system components and 
provides required communications (i.e., Vehicle-to-
Infrastructure (V2I), Vehicle-to-Vehicle (V2V), and Vehicle-
to-Sensor (V2S) communications in our case). 
   The overall scenario description goes as follows: the target 
vehicle relies on its front camera to capture upcoming traffic signs. 
This camera is attached to the TSR subsystem, which will apply our 



MLPNN algorithm to interpret perceived signs. Once a traffic sign 
is recognized (e.g., speed limit icon), vehicle internal systems will 
act with the proper way to follow the current navigation restrictions 
such as the Adaptive Cruise Control (ACC) sub-system that will 
change the appropriate vehicle velocity and maintain required 
safety distance. We can also calculate the traffic sign distance from 
the sensing camera to carry out more accurate vehicle components 
management. 
  Through the embedded gateway, the target vehicle will likewise, 
share the sign notification information with its neighboring 
vehicles, so that all the traveling vehicles will have a continuous 
reference for the zone driving rules. 
  It is worth noting that we need a common consensus for the traffic 
signs information, to facilitate their exchange. 

V.  CONCLUSIONS AND FUTURE WORK 

    In this paper, we have proposed a new Java platform called 
"ARIBAN" for traffic sign recognition and classification using 
multi-layer perceptron neural networks. Feed forward propagation 
back propagation algorithms have been applied to build the 
network. Then, the neural network has been trained with several 
various traffic signs. Recognition parameters like learning rate and 
layers numbers have been taken into account to evaluate the 
proposed program. Accuracy results have shown the effectiveness 
of our platform on the KUL Belgium Traffic Sign Dataset. 
  We will integrate this system with our proposed system for 
pedestrian detection [32] toward autonomous driving. However, 
much more work is required to attain fully autonomous driving. 
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