
978-1-7281-4275-3/19/$31.00 ©2019 IEEE

Traffic Sign Recognition Using Neural Networks

 Useful for Autonomous Vehicles

Jihene REZGUI ‡, Amal HBAIEB ∗†, Lamia CHAARI†, Julien Maryland‡

 ‡ Laboratoire Recherche Informatique Maisonneuve (LRIMa), Montreal, Canada
∗ Higher Institute of Computer Science and Multimedia of Sfax, University of Sfax, Tunisia

† Digital Research Center of Sfax (CRNS)
Laboratory of Technology and Smart Systems (LT2S), University of Sfax, Tunisia

jrezgui@cmaisonneuve.qc.ca, amelhbaieb@yahoo.com, lamiachaari1@gmail.com, garfieldcod99@gmail.com.

Abstract—Transportation is a vastly developed research
field that tries to optimize humans’ safety in everyday life.
Recently, autonomous vehicles are being thoroughly developed
by a lot of companies such as Uber[1] and Tesla[2], which will
improve safety on the roads. These vehicles are using artificial
intelligence to correctly interact with their environment. First,
we developed a Java program called “ARIBAN” which
provides algorithms for recognition and classification of traffic
signs with Multi-Layer Perceptron Neural Networks (MLPNN).
Second, we use back propagation algorithm in a supervised
manner to establish the network. Third, the neural networks
are trained and used with a large amount of traffic signs.
Finally, the post-processing combines the results to make a
recognition decision. Eventually, we have tested our trained
network with more than 62 types of traffic signs. Experimental
results have demonstrated the effectiveness of the proposed
system. Furthermore, the proposed system was deployed within
an architecture for autonomous driving.

Keywords— ARIBAN, Neural Network, Artificial Intelligence,

Traffic Signs, Image Recognition, Classification, Autonomous
driving.

I. INTRODUCTION
 Artificial intelligence (AI) and deep learning have been becoming
increasingly popular in the last years as more and more ways to use
them are discovered. Traffic Sign Recognition (TSR) is becoming
an essential part in Driver Assistance Systems and Automated
Driving (ADAS) [3]. Nevertheless, different viewpoints, traffic sign
sizes, illuminations and weather conditions, etc. make the TSR task
harder. Indeed, existing works stress the TSR decision because of
the large variations in visual appearance of traffic sign images.
Some studies used optical recognition [4] to classify images using
neural networks. Optical recognition is very useful in the context of
self-driving cars, as they need to be aware of the presence of nearby
obstacles and traffic signs, to be both secure and comply with
driving laws. Even if the GPS technology already exists, which can
identify the location of traffic signs; it could be useful to use AI in
the cases where new traffic signs just were implemented, and to
make a double verification of the presence of the traffic signs.

 The entire image recognition system is divided into two phases
such as training and recognition phase. Both phases include (a)
image pre-processing (b) and matrix extraction. Training and
recognition phase also include training of the classifier (neuronal
network) and its simulation. (a) Pre-processing involves the
cropping of the image to get the traffic sign located in the center of

the image. (b) After the cropping, the image matrix is normalized
into a column matrix containing the values of all pixels of the
cropped traffic sign. Then, the normalized image matrix is fed to
the neuronal network. It consists of a varying amount of input
neurons and as many output neurons as the amount of traffic signs
the network was made is shown in Fig. 1.

Fig 1. ARIBAN platform

Our contributions, in this paper, summarized as follows: (1) We
introduce our Java platform, called “ARIBAN” [5], which provides
many analysis tools to identify and classify road signs; (2) We
propose Multi-Layer Perceptron Neural Networks (MLPNN),
which can be trained and used in the context of image recognition,
notably with traffic signs; (3) We enhance the use of two main
algorithms: Feed forward propagation (FFPA) and back
propagation (BPA) to detect and classify traffic signs; (4) We
evaluate the neural network with different types of image to make a
recognition decision; (5) We take into account multiple parameters
for the training phase such as the number of iterations, the learning
rate, the number of images by group involved in the same BPA; (6)
We introduce an autonomous driving use case in which we
highlight the exchange information about traffic sign recognition
through IoV cooperative system.

 The remainder of the paper is organized as follows. Section II
reviews the related works in traffic sign detection and classification.
Then, section III provides information about the training data used
during the learning of our neural network and describes the way the
platform operates. In section IV, experiments are conducted to
evaluate the ARIBAN algorithms. Finally, conclusions are drawn in
Section V.

II. RELATED WORK

The new challenges in intelligent transport require more
research effort from different perspectives to optimize humans’
safety life. Studies in literature are specifically focusing on how
autonomous vehicles could avoid obstacles. However, TSR is a
major issue to recognize and avoid nearby obstacles.

Tesla Autopilot [6-7] is an advanced driver-assistance system
using artificial intelligence to help the driver reach his destination
safely. This AI can steer the car, regulate its speed, change lanes
and park without any driver input. It uses eight cameras, twelve
ultrasonic sensors and a radar to be able to recognize objects under
any circumstances so the AI can make the car avoid them. The AI
uses machine learning algorithms to be able to improve its
efficiency through time. As our ARIBAN platform enforced by
FFPA and BPA, it uses many data examples to teach the AI. When
drivers use Tesla Autopilot, the system sends data collected to Tesla
so the AI always learn more [8]. In the future, cars using Tesla
Autopilot will be completely autonomous, being driverless vehicles,
using an advanced artificial intelligence. Popular or specially
designed schemes include two phases: Detection and Classification
to recognize traffic signs in an image. There are many researchers
working on this challenging task to propose solutions. However, it
is not easy to compare their methods until the release of the German
TSR Benchmark [9] and KUL Belgium Traffic Sign Dataset [10].
Proposed methods, to solve detection and classification issues, are
reviewed as follows:

A. Traffic sign detection [11-17]

Because of the harsh environment conditions, the images
obtained by the camera are with low quality. Captured image pre-
processing can be used to improve the traffic sign regions and to
make it easier for subsequent steps. In order to have more distinct
signs, the commonly way is transforming images into a new color
space. Several color spaces schemes are used, for example Hue
Saturation Intensity [11], improved Hue Saturation Lightness [12],
normalized color space [13], and histogram of oriented gradients
(HOG) [14]. Additionally, using machine learning [15], authors
proposed a color probability model to improve the main color of the
signs while removing the background regions. Authors trained
Support Vector Machine (SVM) classifier [16-17] to map each
pixel in the images to a gray value with higher score in the traffic
sign. In previous traffic sign detection works, threshold based
methods are used [11]. Some other methods like Convolutional
Neural Network (CNN) [16] were also used whereas in this paper
we used MLPNN.

B. Traffic sign classification[18-25]

Traditional methods for classification include feature extraction and
classifier training. Numerous studies enforce SVM classifier with
Multi-Layer Perceptron (MLP) with radial histogram features [19]
in opposite to our ARIBAN which uses classical MLP. Other
combinations with SVM are proposed as HOG features [14], K-d
trees and Random Forests with Distance Transforms and HOG
features [18], Artificial Neutral Network with Rotation Invariant
Binary Pattern based features [20], local image permutation interval
descriptor [21]. In [22], three different features representations are
extracted: (1) dense scale-invariant feature transform, (2) HOG and
(3) Local binary patterns features. Then they were implemented
with locality-constraint linear coding. After, the results were
generated by spatial pyramid pooling. These features were
combined as the final features of a traffic sign, using SVM as the
classifier. In [23], Multi-column CNNs, were proposed to classify
traffic signs. They train multiple CNNs with different data pre-
processing and weight initialization. However, in [24], local and

global features in CNN were combined to recognize traffic signs.
Compared to [23], an enhanced version of cross entropy loss [25],
used in training CNN, obtains better results. Authors in [28]
proposed a new TSR approach for intelligent vehicles. The
suggested road sign recognition involves three steps; firstly, the
input image mapped from the Cartesian coordinate system to the
log-polar one. Secondly, from the image represented in the log-
polar coordinate system the HOG, the local binary pattern (LBP)
and local self-similarity characteristics (LSS) are calculated.
Thirdly, their system performs classification using the random
forest classifier. They tested their solution on the German Traffic
Sign Recognition Benchmark dataset.

We conclude constructing well-designed network architecture
and training a practical model are still challenging tasks, even
though CNN is proved to be efficient in image classification. In the
next section, we present our MLPNN integrated in ARIBAN
platform, which recognize and classify traffic signs in images.

C. Traffic sign Recognition for Autonomous Driving [29-30]

 Numerous real-time systems including localization, planning,
environment perception, and control should be implemented to
accomplish autonomous tasks of a vehicle in urban situations.
Autonomous vehicles today depend on the constructed road maps to
provide the location of all traffic signs. To automate this process,
authors in [29] built a laser-based generic sign detector that locate
the orientation and the position of all signs surrounding the
autonomous vehicle. Furthermore, they implemented a direction
invariant classifier that differentiates stop signs from nonstop signs,
even when viewed from the back or side. In their system, they used
Haar-type filters with a sliding window to fix the differential along
the edges of the target sign. According to the authors, their system
detect signs at 89% precision. In [31] authors introduced an
Advanced Driver-Assistance Systems (ADAS) as a path toward
autonomous vehicles. They confirm that many ADASs support
traffic sign detection. The common use case is the identification of
the speed limit on the road. An ADAS would alert the driver in case
of the vehicle speed is over the limit.

Sign recognition is a primordial task of autonomous vehicles. Any
misrecognition of traffic signs can lead to disastrous accident. In
[30], authors examined security attacks against TSR systems for
Deceiving Autonomous caRs with Toxic Signs (we call the
proposed attacks DARTS). They demonstrated a wide range of
attacks on TSR. They proposed two methods to create toxic signs.
The first one-named Out-of-Distribution attacks allow an adversary
to convert any sign or logo into a targeted adversarial example. The
second method known as The Lenticular Printing attack allows an
adversary to embed a potentially dangerous traffic sign into a safe
one, with no access to the internals of the classifier. Our results
demonstrate that the proposed attacks are successful under both
settings and threat models. They demonstrated the effectiveness of
attacks virtual and real-world settings.

III. THE ARIBAN PLATFORM

A. Platform’s Input

The kind of images which can be used to train or test neural
networks on our platform are of the .ppm, .jpg or .png format, of
any sizes. They will be scaled to fit to the neural network’s
specifications.

To train and test the neural networks on our platform, we used
the KUL Belgium Traffic Sign Dataset [10]. They consist of 51
different traffic signs, each divided in two categories: training and
testing. While the training images are to be used to train the neural
network, the testing images are used to test its efficiency. The

reason we want the testing images to be different than the training
images is that we need to know whether or not the neural network is
able to identify any traffic sign, and not just the ones that were used
to train it. It is also important to note that the neural networks can
be saved and opened for later uses.

B. ARIBAN’s analysis process

1) The neural network creation: The first step is to create a
neural network with the desired settings. The types of traffic signs
that will be analyzed need to be specified, as well as the number of
hidden layers, the amount of neurons in those hidden layers and the
size of the pictures the neural network can analyze. The size of
which the pictures that will be fed to the neural network will be
resized needs to be defined, as it will change the amount of neurons
in the input layer. The activation function of every layer also needs
to be specified, although the function for the last layer is already set
to sigmoid, as we want the neural network to produce a number
between 0 and 1, 1 being the most certain about a certain type of
traffic sign and 0 being the least. The channels of color in which the
image fed to the neural network will be decomposed can also be
chosen at this point.

2) The training phase: The second step after creating the

neural network is training it. When starting a training session, many
parameters need to be specified. First of all, whether to use the
stochastic method and, if the option was chosen, how many training
images are used in every set. Second of all, the location of the
images used during the training and their types need to be specified,
whether by identifying folders containing a certain type or
individual images. Finally, the number of epochs needs to be
specified: how many times the network will effectuate the
backpropagation technique?

3) The testing phase: After training the neural network, it is

important to recognize whether or not it has learned correctly. The
testing phase has very few parameters to define, which are very
similar to the ones in the training phase. Only the location and the
types of the pictures that will be used to test the neural network
need to be specified. After the testing process is done, the program
will output the percentage that the neural network guessed
correctly.

4) Analysis of a more complex image: This phase consists in
analyzing a single image which can contain a traffic sign. The
image that will be analyzed needs to be selected, and then the
program starts the process to find the presence of traffic signs. The
program will then tell the user which traffic sign was found in the
image.

C. The neural network’s

 Neural networks used in our program are multilayer perceptron
composed with an input layer, one or more hidden (intermediate)
layers and an output layer. Each layer is composed with neurons,
the base unit of the neural network, that is defined by a real number
and an activation function, described later. The goal of a neural
network is to transform input values into output values. In our case,
each input value corresponds to the RGB value of a pixel in an
image, and each output value correspond to a different traffic sign.
The goal of that neural network is to guess the presence of traffic
signs in the analyzed image. The value of an output neuron
corresponds to the degree of certainty of presence of the traffic sign
represented by that neuron in the image. Each neuron from a layer
is connected to each neuron in the next layer with a real number,
called weight. Each weight has a random value determined at the

initiation of the neural network. Also, each layer can have an extra
neuron, called biais that will affect the value of the neurons in the
next layer. Its goal is to improve the precision of the algorithm by
having an unrelated influence in the calculation to the input values.

1) Feed forward propagation algorithm

 The first algorithm used in a multilayer perceptron is the feed
forward propagation algorithm, called FFPA. This is the main
algorithm of the neural network, its goal is to map the input values
into the output values. Its first step is to determine the values of the
neuron of the first hidden layer. First, each neuron of the input layer
sends its value into each neuron of the next layer, multiplied by the
value of the weight. Each neuron of the next layer then takes
multiple values, one for each neuron of the first layer, and does the
sum of each of the values. This new value is sent into the activation
function related to the neuron that will transform the value into
another value, which is the final value of that neuron. This process
is repeated until the last layer to determine the value of each neuron
in the network.
There are various types of activation functions, the sigmoid
function, the linear function, the hyperbolic tangent function and
finally, the hard limiting function. Table 1 illustrates the equation of
the different activation function.

 TABLE 1: Activation functions

Function Name Equation of the activation function

Sigmoid

Linear function

Hyperbolic
tangent

Hard limiting

 To simplify FFPA, it is possible to use matrices operations.
Indeed, by placing the input values in a column matrix, and the
weights in a normal matrix, the values of the next layer are given by
the resulting matrix of the multiplication of these two matrices
where each value has passed into the activation function. The
values of the neurons of the next layer are described with the next
function:

 (1)

Where H is the Matrix of the values of the next layer,
σ

 is the
Activation function of the next layer, W is the Matrix of the
weights, X is the Column matrix of the values of the current layer
and B is the Matrix of the biais neuron of the current layer

 With this algorithm, the neural network is able to guess the
presence of traffic signs in the image. However, since the weights
values are randomly determined at the initiation, the neural network
needs to change these weights depending on the traffic signs to
analyze to be able to do good recognition. To do this, the network
needs to compare the results that it predicted with the FFPA with
real results. The difference between the objective and the predicted
values gives the errors of each output neuron of the network,
describing the precision of the algorithm. To have an estimation of
this precision, the algorithm does the average of each squared error,
which gives the cost function of the network.
The cost function is described as follows:

 (2)

Where C(t,y) is the Cost function, N: Number of neurons in the
layer, t is theTarget value of the neuron and y is the Predicted value
of the neuron.
 Since the goal of neural network is to recognize the presence of
traffic signs with the fewest mistakes possible, our objective is to
minimize this cost function. To do this, it is important to know that
the results given by the algorithm are based on the weights between
the neurons of the network. Our next step is to find the most
appropriate values for these weights to recognize correctly traffic
signs in an image. In order to do modify these values, so to
minimize the cost function and improve the precision of the neural
network, it needs a second algorithm called backpropagation
algorithm.

Fig.2.Testing phase

In our program, the FFPA is used in every step: during the
training, the testing and the analysis. It is particularly used in the
testing and the analysis parts, where the neural network tries to
identify the traffic sign present in the image. In our application,
during the testing part as shown in Fig. 2, it is possible to choose
the images that will be used to test the efficiency of the neural
network.

Fig. 3. Analysis phase

During the analysis part, it is possible to choose the image to
analyze with the present neural network. The application will then
tell the user about the identification made by the neural network.
(Fig.3).

2) Back propagation algorithm
The second algorithm is named back propagation (BPA). Its

goal is to train the neural network, to improve its precision
depending on the traffic signs that need to be recognized by
minimizing the cost function. To minimize the error of the network,
it needs to find the adapted weights’ values to classify correctly the
image give in input. To do this, it needs to use the gradient descent

algorithm (GDA), a mathematical algorithm that minimize a
function using the gradient vector, a vector that describes the
directional derivative of a multivariable function oriented in the
direction of the maximization of the function at a specific point.
To determine the gradient vector used in this algorithm, it is
necessary to find the different variables present in the complete
neural network that have an impact on the results.
 In our case, the gradient is based on the values of the neurons, on
the errors of the network, on the derivative of the activation
functions and on the learning rate, which describe the learning
speed of the network.
The function describing the variation of the values of the weights in
the network is:

 (3)

Where is the Column matrix of the difference between the
actual value of the weight and the new value of the weight, n is the
Learning rate, E is the Column matrix of the errors of the actual

layer, is the Derivative of the activation function,

And is the Transposed column matrix of the neuron values of
the actual layer.

 The GDA consists of following the inverse direction of the
gradient vector since, by definition, this vector seeks the
maximization of the function, and we want the inverse of the vector
to minimize the function. After following it for a short distance, it
needs to be recalculated to find the new direction of that vector that
will minimize the function. With this first step, the values of the
weights will be changed, which will reduce the cost function, and
improve the precision of the network. To find the relative minimum
of the cost function, this step needs to be repeated many times, until
the function is minimized. It is possible to compare this algorithm
with the descent of a hill to its hollow by taking the shortest way.

 It is essential to recalculate the gradient vector after following it
for a short distance in is inverse direction, because this vector seeks
to minimize the function at the point of the function where it’s
calculated, and only at that point. The inverse gradient vector does
not minimize the function anymore when it is far from its origin
point. By travelling short distances in its opposite direction and by
then recalculating it, we make sure that it’s always heading towards
the relative minimum of the function.

 To apply GDA in our neural network, we start with the output
values and calculate the values that minimize the error with the
weights between the output layer and the last hidden layer using the
gradient formula that calculates the change in the weight values.
After modifying these first weights, the algorithm does the same
step with the weights located between the last hidden layer and the
layer that precedes it. That step is repeated until every weight has
changed their values, which will have minimized a little bit the cost
function. This algorithm is called BPA, because it travels the neural
network in the opposite direction.

After travelling the neural network one time in its opposite
direction, the training method will reproduce these two algorithms
with another image, which will give another predicted result with
the FFPA. The BPA will then minimize a little bit more the cost
function, which will improve the precision of the neural network.
After doing these steps with thousands of example images that
contains every type of traffic sign, the BPA should have succeeded
to reach the minimum of the cost function, which means that it will
do minimal errors, and therefore will have learned to recognize
traffic signs in an image with a good accuracy.

Fig.4. Training Phase

 These algorithms are all used while training the neural network
as shown in Fig.4., which can be created in our application, where it
is possible to choose the images used for the training, the number of
iterations, which is the number of times we train the neural network
with one group of images, the learning rate, which is the rate that
determines the speed of the training and finally, the stochastic size,
which determines the number of images used in one group of
images.

IV. PLATFORM RESULTS

A. Simulation Input

 To obtain the results in the next subsection, the following input
parameters were specified: the learning rate (we picked two
exponentially relative lower values: LR=0.01 and LR=0.02), the
number of iterations (Ite=100 and Ite=150), the number of images
by group (we took of constant value of 50), and the number of
hidden layers (from 2 to 5 layers). The main purpose is to
determinate the best parameters that increase the recognition
accuracy and reduce the processing time. Different training and
testing traffic sign images (TS) were selected for making
performance evaluation (e.g., stop sign, parking sign, speed limit
sign, etc.).

B. Generated Results
 The experiments were repeated twice on the cited database, using
a network with two hidden layers that have 12 neurons each.
Recognition accuracy averages are summarized in Table 2.

TABLE 2: Recognition accuracy

TS class number LR: 0.01
Ite: 100

LR: 0.02
Ite: 100

LR: 0.01
Ite: 150

2 (Red circle/Blue circle) 99.29% 98.87% 99.42%

3 (Red circle/Blue
circle/Triangle)

99.08% 98.30% 99.22%

4 (Stop/Parking/
Triangle/Red circle)

95.65% 94.22% 95.79%

5 (Stop/Parking/
Triangle/Red circle/Blue
circle)

93.11% 91.12% 93.20%

6 (Stop/Parking/
Triangle/Red circle/Blue
circle/Speed limit)

90.95% 89.03% 91.04%

We notice that we can reach good accuracy results as we train the
established network with more number of iterations. Furthermore, a
low learning rate can make the training phase more effective (that
refers to the shallow weights updates of the network). However, it
will increase the training time.

C. Neural network results

 As aforementioned, we have tested the accuracy rate with a
different number of hidden layers (HL: varying from 3 to 5 layers,
with 12 neurons in each layer) and using the same traffic sign
images as above. We used fixed values for learning rate and
iterations number parameters (LR=0.01, Ite=100). The results are
shown below (Table 3).
 According to the table, we note that increasing the number of
hidden layers up from 2 to 5 layers has enhanced the accuracy rate.

D. Autonomous Driving use case: TSR

 The self-driving vehicle is comprised of a full suite of input
components (e.g., sensors), Electronic Control Units (ECUs),
actuators, intra-vehicular networks (e.g., Controller Area Network
(CAN) [26], Local Interconnect Network (LIN), Ethernet, etc.), and
advanced specific sub-systems to perform its functional blocks such
as TSR. Sharing information about traffic signs among autonomous
vehicles like no-overtaking sign or speed limit sign is significant for
safe guidance and navigation. Accordingly, this subsection presents
a traffic sign information exchange for autonomous driving within
an IoV cooperative system. The data flow can be accomplished
with an In-Car Gateway communication as proposed in our
previous work [27]. The overall system architecture is shown in
Fig. 5.

TABLE 3: Recognition accuracy

TS Class
number

HL number: 3
LR: 0.01
Ite: 100

HL number: 4
LR: 0.01
Ite: 100

HL number:
5
LR: 0.01
Ite: 100

2 TSC 99.42% 99.50% 99.67%

3 TSC 99.15% 99.24% 99.36%

4 TSC 95.71% 95.79% 95.88%

5 TSC 93.18% 93.25% 93.32%

6 TSC 91% 91.05% 91.10%

7 TSC 87.73% 87.78% 89.80%

Fig.5. TSR environment architecture

 As depicted, the driverless car zone involves a mounted In-
Car Gateway device which will serve as the coordinator
between the different collaboration system components and
provides required communications (i.e., Vehicle-to-
Infrastructure (V2I), Vehicle-to-Vehicle (V2V), and Vehicle-
to-Sensor (V2S) communications in our case).
 The overall scenario description goes as follows: the target
vehicle relies on its front camera to capture upcoming traffic signs.
This camera is attached to the TSR subsystem, which will apply our

MLPNN algorithm to interpret perceived signs. Once a traffic sign
is recognized (e.g., speed limit icon), vehicle internal systems will
act with the proper way to follow the current navigation restrictions
such as the Adaptive Cruise Control (ACC) sub-system that will
change the appropriate vehicle velocity and maintain required
safety distance. We can also calculate the traffic sign distance from
the sensing camera to carry out more accurate vehicle components
management.
 Through the embedded gateway, the target vehicle will likewise,
share the sign notification information with its neighboring
vehicles, so that all the traveling vehicles will have a continuous
reference for the zone driving rules.
 It is worth noting that we need a common consensus for the traffic
signs information, to facilitate their exchange.

V. CONCLUSIONS AND FUTURE WORK

 In this paper, we have proposed a new Java platform called
"ARIBAN" for traffic sign recognition and classification using
multi-layer perceptron neural networks. Feed forward propagation
back propagation algorithms have been applied to build the
network. Then, the neural network has been trained with several
various traffic signs. Recognition parameters like learning rate and
layers numbers have been taken into account to evaluate the
proposed program. Accuracy results have shown the effectiveness
of our platform on the KUL Belgium Traffic Sign Dataset.
 We will integrate this system with our proposed system for
pedestrian detection [32] toward autonomous driving. However,
much more work is required to attain fully autonomous driving.

ACKNOWLEDGMENT
 This research was financially supported by the “Fonds Québécois
de la recherche sur la nature et les technologies (FRQNT).” We
would like to thank Adrien Marcotte, student at College
Maisonneuve, for his valuable comments and participation in this
project.

REFERENCES

[1] https://www.techradar.com/news/uber-self-driving-cars, [Accessed: 22- July -
2019].

[2] https://www.tesla.com/en_CA/autopilot?redirect=no, [Accessed: 22- July-
2019].

[3] R. Timofte, V. A. Prisacariu, L. J. Van Gool, and I. Reid, "Chapter 3.5:
Combining traffic sign detection with 3d tracking towards better driver
assistance" in Emerging Topics in Computer Vision and its Applications, C. H.
Chen, Ed. World Scientific Publishing, September 2011.

[4] http://www.legalscans.com/ocr.html [Accessed: 22- July- 2019].
[5] J. Rezgui, J. Mayrand, A. Hbaieb and A. Marcotte, "ARIBAN platform",

https://github.com/ResearchProjectTSR/ARIBAN-platform, Accessed: 22-
May- 2019].

[6] https://www.predictiveanalyticstoday.com/top-companies-autonomous-cars-
self-driving-car/[Accessed: 22- July - 2019].

[7] http://www.businessinsider.com/tesla-autopilot-functions-and technology-
2017-12. [Accessed: 22- July - 2019].

[8] https://www.techrepublic.com/article/teslas-autopilot-the-smart-persons-
guide/[Accessed: 22- July - 2019].

[9] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel, "The German traffic sign
recognition benchmark: A multi-class classification competition, " in Proc.
IEEE Int. Joint Conf. Neural Netw. (IJCNN), Jul. 2011,pp. 1453–1460.

[10] M. Mathias, R. Timofte, R. Benenson and L. Van Gool, "Traffic sign
recognition-How far are we from the solution? ", The 2013 International Joint
Conference on Neural Networks (IJCNN), 2013, pp. 1-8.

[11] A. de la Escalera, J. M. Armingol, and M. Mata, “Traffic sign recognition and
analysis for intelligent vehicles,” Image Vis. Comput., vol. 21, no. 3, pp. 247–
258, 2003.

[12] H. Fleyeh, “Color detection and segmentation for road and traffic signs,” in
Proc. IEEE Conf. Cybern. Intell. Syst., vol. 2. Dec. 2004, pp. 809–814.

[13] W. Ritter, F. Stein, and R. Janssen, “Traffic sign recognition using colour
information,” Math. Comput. Model., vol. 22, nos. 4–7, pp. 149–161, 1995.

[14] J. Greenhalgh and M. Mirmehdi, “Real-time detection and recognition of road
traffic signs,” IEEE Trans. Intell. Transp. Syst., vol. 13, no. 4, p. 1498–1506,
Dec. 2012.

[15] Y. Yang, H. Luo, H. Xu, and F. Wu, “Towards real-time traffic sign detection
and classification,” IEEE Trans. Intell. Transp. Syst., vol. 17, no. 7, pp. 2022–
2031, Jul. 2016.

[16] Y. Wu, Y. Liu, J. Li, H. Liu, and X. Hu, “Traffic sign detection based on
convolutional neural networks,” in Proc. Int. Joint Conf. Neural Netw.
(IJCNN), Aug. 2013, pp. 1–7.

[17] M. Liang, M. Yuan, X. Hu, J. Li, and H. Liu, “Traffic sign detection by ROI
extraction and histogram features-based recognition,” in Proc. Int. Joint Conf.
Neural Netw. (IJCNN), Aug. 2013, pp. 1–8.

[18] F. Zaklouta, B. Stanciulescu, and O. Hamdoun, “Traffic sign classification
using K-d trees and Random Forests,” in Proc. Int. Joint Conf.Neural Netw.
(IJCNN), Jul. 2011, pp. 2151–2155.

[19] Y. Jiang, S. Zhou, Y. Jiang, J. Gong, G. Xiong, and H. Chen, “Traffic sign
recognition using ridge regression and OTSU method,” in Proc. IEEE Intell.
Veh. Symp. (IV), Jun. 2011, pp. 613–618.

[20] S. Yin, P. Ouyang, L. Liu, Y. Guo, and S. Wei, “Fast traffic sign recognition
with a rotation invariant binary pattern based feature,” Sensors, vol. 15, no. 1,
pp. 2161–2180, 2015.

[21] T. Tian, I. Sethi, and N. Patel, “Traffic sign recognition using a novel
permutation-based local image feature,” in Proc. Int. Joint Conf. Neural Netw.
(IJCNN), Jul. 2014, pp. 947–954.

[22] Y. Zhu, X. Wang, C. Yao, and X. Bai, “Traffic sign classification using two-
layer image representation,” in Proc. 20th IEEE Int. Conf. ImageProcess.
(ICIP), Sep. 2013, pp. 3755–3759.

[23] D. Ciresan, U. Meier, and J. Schmidhuber, “Multi-column deep neural
networks for image classification,” in Proc. IEEE Conf. Comput. Vis.Pattern
Recognit. (CVPR), Jun. 2012, pp. 3642–3649.

[24] P. Sermanet and Y. LeCun, “Traffic sign recognition with multi-scale
convolutional networks,” in Proc. Int. Joint Conf. Neural Netw. IJCNN), Jul.
2011, pp. 2809–2813.

[25] J. Jin, K. Fu, and C. Zhang, “Traffic sign recognition with hinge loss trained
convolutional neural networks,” IEEE Trans. Intell. Transp. Syst., vol. 15, no.
5, pp. 1991–2000, Oct. 2014.

[26] Chaari, L., Masmoudi, N., & Kamoun, L. (2002, October). Electronic control
in electric vehicle based on CAN network. In Systems, Man and Cybernetics,
2002 IEEE International Conference on (Vol. 7, pp. 4-pp). IEEE.

[27] Hbaieb, A., Rhaiem, O. B., and Chaari, L , “In-car Gateway Architecture for
Intra and Inter-vehicular Networks”. In 2018 14th International Wireless
Communications & Mobile Computing Conference (IWCMC) (pp. 1489-
1494). IEEE. (2018).

[28] Ayoub Ellahyani, Mohamed Ansari, Redouan Lahmyed, Alain Trémeau. “A
new traffic sign recognition method for intelligent vehicles”, Journal of the
Optical Society of America , In press.

[29] Levinson, J., Askeland, J., Becker, J., Dolson, J., Held, D., Kammel, S., ... &
Sokolsky, M. (2011, June). Towards fully autonomous driving: Systems and
algorithms. In 2011 IEEE Intelligent Vehicles Symposium (IV) (pp. 163-168).
IEEE.

[30] Sitawarin, C., Bhagoji, A. N., Mosenia, A., Chiang, M., & Mittal, P. (2018).
Darts: Deceiving autonomous cars with toxic signs. arXiv preprint
arXiv:1802.06430.

[31] Kukkala, V. K., Tunnell, J., Pasricha, S., & Bradley, T. (2018). Advanced
Driver-Assistance Systems: A Path Toward Autonomous Vehicles. IEEE
Consumer Electronics Magazine, 7(5), 18-25.

[32] Amal HBAIEB, Jihen REZGUI, Lamia CHAARI FOURATI, Pedestrian
Detection for Autonomous Driving within Cooperative Communication
System, IEEE Wireless Communications and Networking Conference, 15-18
April 2019 // Marrakech, Morocco.

