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Abstract – Thousands of road accidents occur each year, 

one of the main causes being drowsiness at the wheel. 

Therefore, this paper proposes an enhanced scheme called 

ALIVE Mind to detect drowsy drivers and take action on 

their car using Machine Learning and EEG. For that matter, 

we built and designed a circuit board called AMC 2.0 that 

allows a simple EEG headset to read brain waves from a 

driver and send this data to a computer via Bluetooth. Those 

signals are then saved and analyzed by a deep neural network 

to find if the driver is drowsy or is about to sleep. To evaluate 

our solution, we conducted simulations and collected brain 

signals of a subject driver while on a driving simulator. With 

those values, we were able to train a model to detect whether 

the subject was drowsy or awake.  Finally, when the system 

detects that the driver is in a fatigued state, it can take control 

of the car to park it in a safe place. Preliminary results show 

the effectiveness of the ALIVE Mind project and how it 

outperforms previous works in terms of minimizing 

computational needs and improving the prototype’s 

convenience and suitability for car constructors. 

Keywords: ALIVE Mind, controlling physical vehicle, 
EEG, AMC, Machine Learning, IoT. 

I. INTRODUCTION 

The number of vehicles sold each year grows almost 
exponentially. At the same time, the number of road accidents is 
dramatically increasing. NHTSA estimates about 1,550 deaths, 
71,000 injuries and $12.5 billions in economic losses are 
attributed to driver fatigue each year, just in the United States of 
America. However, we believe that there are many ways to reduce 
the number of road accidents. In recent years several systems have 
been developed and implemented to reduce the number of road 
accidents, such as backup cameras or blind spot detection 
systems, which can avoid certain collisions. There are other 
systems such as traction control systems or the electronic stability 
control that helps keeping control of the car in hazardous 
conditions. The problem is that none of these systems considers 
the most important cause of road accidents, namely the human 
factor. By using the driver’s biometric data, it would be easier to 
predict and avoid the various road accidents caused by anger, 
fatigue, or the level of sobriety. Several studies focused on this 
path by training Machine Learning (ML) models with data about 
the driver, such as images or electroencephalographic (EEG) 
signals, to detect if he or she is in a drowsy state [1-6]. However, 
these works lack convenience and affordability to be considered 
by car constructors. For this reason, we built an easy-to-use 
system, called ALIVE Mind, that can detect drowsy drivers and 
acts upon this real-time detection. To do so, we improved the 

printed circuit board (PCB), designed in our previous work which 
was called AMC 1.0 [7], to collect brain waves and trained a ML 
model to determine whether the driver is drowsy or awake. As 
soon as we know that the driver is about to sleep, we can take 
action to help the driver, such as calling the police, turning on the 
lights, ringing an alarm to wake up the driver or even taking 
control of the car and bring the driver to a safe place. We think 
that this project could be helpful in real life situations and could 
contribute to reduce the amount of car accidents due to driver 
fatigue. 

Our contributions in this paper can be summarized as 
follows: (1) We designed a custom PCB named ALIVE Mind 
Controller 2.0 (AMC 2.0) which was integrated in a small and 
easy-to-wear EEG headset; (2) We proposed a new way to 
efficiently and effortlessly collect brain waves data using 
Bluetooth technology; (3) We analysed the collected data to build 
multiple ML models that can run with low computational 
demand; (4) We ran several experiments to achieve high accuracy 
with a restrained dataset and (5) We controlled a new physical 
ALIVE car [8-9] based on the brain waves and the best ML 
model’s outputs.  

Section II gives a brief overview of related works and 
compares them to our ALIVE Mind project. Section III describes 
ALIVE Mind architecture and its different components. Section 
IV explains the data preprocessing steps and ML models. Section 
V shows the ML algorithms performances as well as an overall 
comparison with previous studies under several criteria. Finally, 
Section VI concludes the paper and provides potential paths for 
future work. 

II. RELATED WORK 

Several projects have been proposed to tackle driver 
drowsiness detection with ML techniques which are in wide use 
today. These studies can be roughly divided into two categories: 
a) Computer vision for driver fatigue detection and b) Deep 
Learning and EEG. In this section, we present the main 
characteristics of each category. Then, we highlight important 
differences between studies in that category and ours.  

A. Drowsiness Detection with Computer Vision vs 

ALIVE Mind Project  

The studies falling into this category chose the computer 
vision approach to detect drowsiness on a driver. Their system 
would generally involve a camera recording the face and eyes 
movements. The captured images would then be fed into a ML 
algorithm that would predict the state of the subject. Many studies 
only use computer vision [1-2], but some decided to combine 



image processing with EEG signals [3], leading to better accuracy 
results in general. 

Based on these studies, the body language of the face 
transmits a lot of information about the drowsy state of a driver, 
meaning that a model able to take these images as inputs can 
achieve remarkable performances. It also helps to detect if the 
driver is distracted while driving, which is another dangerous risk. 
However, many factors can affect the recorded data in the driver’s 
environment like brightness, quick movements, and the driver’s 
distance from the camera, which can negatively impact the 
model’s predictions. Because ALIVE Mind scheme is using EEG 
signals to achieve the same results, we did not have to consider 
such factors and thus could focus on reducing the computing cost 
of our algorithms while keeping an acceptable accuracy. 

B. Deep Learning and EEG for Driver Fatigue 

Detection vs ALIVE Mind Project  

Studies that fall into the second category are much closer to 
ALIVE Mind project, because they predict the state of the driver 
based on EEG signals recorded by a headset on the driver’s head. 
This headset includes electrodes strategically placed on specific 
zones of the brain to capture the signals, which are then sent to a 
computer with wires to train a ML model. Some studies have 
reported nearly perfect results in terms of accuracy [4] by using a 
large and deep model, while others have shown great 
performances with smaller models [5-6]. 
 The common aspect of most studies in this category is the 
complexity and expensiveness of their hardware. For example, the 
headset used in [4] is a complex system with more than 10 
electrodes and can cost thousands of dollars, while also being 
bulky for the driver. With ALIVE Mind, we aimed to use a simple, 
homemade headset that cost us just about $50 and let the driver 
almost forget that he is wearing it because of its light weight. Of 
course, with only 2 electrodes, our headset is most likely less 
precise in its data acquisition, but the accuracy results show that 
the trained models can still reach acceptable performances. 

III. ALIVE MIND SCHEME 

 
Fig.1. Architecture of ALIVE Mind 

In its current state, the system architecture is made of three 
vital steps: (a) Data collection, (b) Communication and Data 
Analysis and (c) Automatic Car Control. The headset uses a 
TGAM module to transfer the data from the electrode to the AMC 
2.0, the latter will organize and transmit the data by Bluetooth to 
a computer or a mobile device. 

A. Data Collection 

The headset transmits a variety of data, including signal 
strength and five different wave types, Delta, Theta, Alpha, Beta 
and Gamma. They represent the electrical diagram occurring in 
the brain of the headset user (see Fig.2). This headset is composed 
of two electrodes, one on the forehead for the collection of brain 
waves and another electrode on the earlobe as a reference. Even 
if the headset is composed only of two electrodes, it remains very 
advantageous. From its very low price (about 50$) as well as low 
energy consumption. Indeed, we can leave the headset for more 
than a week, to collect data. 

  
Fig.2. EEG waves characteristics 

The microcontroller used in version 1 (see Fig.3.a) of the 
ALIVE Mind project has also been modified. The new version 
(see Fig.3.b) is up to 5 times smaller than the previous one but 
with more functionality. In addition to the basic components, we 
have replaced the batteries with a rechargeable 3.7-volt lithium-
ion battery. A switch has been added to avoid draining the battery. 
A new green LED is added to indicate if the circuit is well 
powered. 

Fig.3. Side by side comparison between AMCs versions 

B. Communication and Data Analysis 

Our headsets communicate via Bluetooth 2.0 with an HC-05 
Bluetooth module. This module allows the headset to connect to 
Windows or Android, but not with Apple products, because they 
only accept modules using Bluetooth 4.0 or Bluetooth Low 
Energy. Electrode data is transmitted via Bluetooth with a script 
that we made in Python using a modified version of the PyBluez 



library. However, we had to use Python 3.7 because it is the most 
recent compatible version with this library. The task of this script 
is to detect the different Bluetooth devices around, obtain the 
MAC addresses of the different devices and establish a 
connection with the selected headset. Once the connection is 
established between the script and the headset, the data can be 
sent to the ALIVE server to later perform a broadcast of the data 
by Wi-Fi, print the data in the console or even save the data in an 
automatically generated text file. 

C. Automatic Car Control  

We use a ALIVE car developed by LRIMa team to perform 
our simulations [8-9] (see Fig.4.(f)). This car has an autonomous 
driving algorithm that allows it to drive freely (see Fig4.(d)). 
However, we can regain control of the car at any time. It is 
possible to send commands to ask it to move forward, backward, 
turn the wheels to the right or to the left or to toggle the headlights. 
The data transmitted by the headset is treated and analysed by an 
ML models (Fig. 4 (b) and Fig. 4 (c)) to determine when to take 
control of the vehicle (Fig.4.(e)). 

(a) collect brain waves (b) train the ML models 

  
(c) Correlate data and compare 

ML models 
(d) drive the car 

 
(e) Control the car if outputs indicate an asleep state 

 
(f) The self-driving car. 

Fig. 4. Steps of drowsiness detection with ML models [10] 

 

IV.  MACHINE LEARNING ALGORITHMS 

This section describes the two supervised ML model types 
analysed to achieve the drowsiness detection task, namely a 
perceptron and a deep neural network (DNN). But first, we begin 
with the preprocessing steps performed on the raw data. 

A. The Preprocessing of Raw Data 

Once the required data had been gathered by our AMC 2.0 
headset as shown in section III, we began to analyse it to 
determine the necessary preprocessing steps to execute in order to 
get the best performances from our ML algorithms. Because the 
input data is only made of very high integers, we applied a min-
max normalization on all input features to restrain all values 
between 0 and 1. 

We also decided to remove possible correlations between 
input parameters. Previous research has shown that such 
correlations can significantly decrease a model’s performance 
[11-12]. By removing highly correlated input features, we reduce 
the computing cost and improve the algorithm’s accuracy at the 
same time. Therefore, we generated a correlation matrix that 
computes the correlation coefficient � for each pair of input 
features by using the following formula: 

� = ∑ [(�� − �̅)(�� − ��)]����
�∑ (�� − �̅)����� × ∑ (�� − ��)�����

 (1) 

where �̅ and �� are the means of the two features for which we 
want to evaluate the correlation. The possible values of � range 
between -1 and 1, the former meaning a perfect inverse 
correlation and the latter meaning a perfect positive correlation. 
A value near 0 would describe a very small correlation with 
respect to the input features. 

 
Fig. 5. The correlation matrix of the brain waves captured by the 

headset’s electrodes. A higher number signifies a stronger 
correlation between the 2 features. 

As we can see in Figure 5, most of the coefficients are around 
0.5, which is not significant enough to consider removing an input 
feature. However, most of the � values paired with low gamma 
and high beta are above 0.7. Because of these stronger 
correlations, the model’s training could be affected by an over-
representation of data relationships in which high beta and low 
gamma are a part of. Therefore, we decided to evaluate two sets 
of input features: one with all the features and the other without 
high beta and low gamma. In section V, we will compare the 



results between the two sets to see if this change brought any help 
to the model’s training. 

B. The Perceptron Model for the Brain Waves 

The first ML model we considered to achieve the required 
task was a perceptron model. This type of model allows a large 
number of input features while keeping the complexity and the 
computing cost at a very low level. Our implementation of the 
perceptron model consists of an input layer of n features and an 
output layer of one Boolean value. 

 

Fig. 6. Architecture of the perceptron model. 

The output is generated by first computing the weighted sum 
of each input: 

� = � ����
�

���
� � (2) 

  

where � is the number of inputs, �� the input value, ��  the 
associated weight and � the bias of the model. Both ��  and �  are 
trainable parameters. We then apply the sigmoid activation 
function on the result: 

� = �(�) = 1
1 � �� (3) 

which compresses the values between 0 and 1. After that we round 
it to the nearest integer to obtain a binary output, where 1 stands 
for a tired state and 0 means an awake state. Figure 6 shows the 
perceptron’s architecture with the location of its trainable 
parameters. 

By considering this type of model, we aimed to find the 
minimum of complexity needed to achieve acceptable 
performances in driver fatigue detection. AI algorithms can be 
difficult to run on small devices because of their high 
computational demand while depending on less resources, thus 
motivating the need of finding a middle ground between accuracy 
and simplicity. 

C. The Deep Neural Network Model for Brain Waves 

The DNN was the second model type we considered in our 
work. A lot like the perceptron, many input features can be fed at 
the same time into this model. However, the addition of hidden 
layers allows models of this type to solve more complex 
situations, at the expense of more computational cost. A DNN 
computes its outputs by following the same kind of algorithm as 
the perceptron model but repeats it for each hidden layer in its 
architecture. 

Because of the large number of weighted sums that must be 
done at the same time, it is common to use matrices in eq. 2, which 
results in the following equation: 

� = ! " � #  (4) 

where $ is the index of the layer and the operator between !  and 
"  is a matrix multiplication. We also apply a non-linear 
activation function on the Matrix �  at each hidden layer, which 
is the Rectified Linear Unit (ReLU) function in our 
implementation: 

" %� = ��&'(� ) = (0, � ) (5) 

where the function is applied to each element of the matrix � . 
The resulting matrix " %� is then used as the input matrix of the 
next layer. For the output layer, however, eq. 3, namely the 
sigmoid function, is still used to reduce the output values between 
0 and 1 as in the perceptron model. 

Table 1. Search space and optimal value of some 
hyperparameters in the deep neural network. 

Hyperparameter Search Space Optimal Value 

Learning rate 1 × 10*+, 1 × 10*, 1 × 10*, 

Regularizer on each 
layer 

None, L1 with - = 
.1 × 10*,, 1 × 10*/0, 

L2 with - = 
.1 × 10*+, 1 × 10*,0 

L2 with - = 1 ×
10−3 

Output activation 
function 

Sigmoid, softmax Sigmoid 

 

We conducted several experimental training sessions in order 
to find the best set of hyperparameters. This set is shown in Table 
1 while the resulting network architecture is displayed in Figure 
7. Because of overfitting on the training set, we added a 
regularization technique on each layer of our optimal DNN. This 
addition helped to reduce some weights with high values that 
impact the model’s ability to generalize on new data. This strategy 
has also been necessary in the perceptron model, as we will 
discuss in section V. 

 

Fig. 7. Architecture of the proposed DNN. 

V.  RESULTS ANALYSIS 

As experimental results, we first trained 4 slightly different 
models in order to find the best solution for driver fatigue 
detection. The parameters used in this simulation are described in 
subsection A, while the results are shown in subsection B. In 
subsection C, we compare ALIVE Mind scheme to other similar 
previous studies on many aspects. 



 
A. Parameters of the Simulation  
To train and compare our ML algorithms, we collected 11464 

records of 8 brain waves from one subject using our ALIVE Mind 
headset. This data has been used to train 4 models of two different 
types in two input features arrangements. First, we evaluated the 
models with all of the collected brain waves as inputs. Second, we 
removed the two highest correlated input features, namely high 
beta, and low gamma, and evaluated all models with the six 
remaining input features.  

Table 2. Differences in hyperparameters for the perceptron 
model and DNNs. The number in the name of DNNs denotes the 

number of hidden layers. 

Model 
Learning 

rate 

# of neurons per 

layer 

Regularizer on each 

layer 

Perceptron 1 × 10*+ -    L2 with - = 1 × 10*, 
DNN-4 1 × 10*, 32, 24, 16, 8    L2 with - = 1 × 10*+ 
DNN-5 1 × 10*, 16, 12, 8, 4, 4     L2 with - = 1 × 10*+ 
DNN-6 1 × 10*, 16, 16, 12, 8, 4, 4     L2 with - = 1 × 10*+ 

 
For the tested models, their main differences in their 

hyperparameters are shown in Table 2. The data has been 
randomly split by a ratio of 70/10/20 for training, validation, and 
testing sets. We also applied min-max normalization on each 
input feature to reduce the high values in the dataset. 

Some hyperparameters are common for all tested models. 
Exactly like the model in Figure 8, all hidden layers of all DNNs 
have a ReLU activation function. Since the problem we are 
solving is a binary classification, we selected the binary cross-
entropy loss function. Finally, we fixed the batch size at 10 and 

chose the Adam algorithm with 2� = 0.9, 2� = 0.999 and 5 =
1 × 10−7 as the optimizer, because its implementation of gradient 
descent optimizes performance and computational cost [13]. 

B. Experimental Results 

Based on the graphs shown in Figure 8, we can conclude that 
the results are quite different depending on the number of input 
features. With 8 inputs (Figure 8.a), the DNN with 6 layers is the 
most suited model to accomplish the task of detecting drowsiness. 
The higher number of layers have certainly helped it to generalize 
from the training data, hence the 0.86% difference between DNN-4 
and DNN-6 as shown in Table 3. With 6 inputs (Figure 8.b), 
however, DNN-5 has the best performance while DNN-6 is second 
in training. 

Overall, it seems like removing the most correlated brain waves 
have worsen the results, except for DNN-5. This may be caused by 
the fact that the input features were not correlated enough to 
negatively impact the training. Combined with the poor amount of 
available data, most models potentially needed the information 
contained in high beta and low gamma to improve their accuracy. 

(a) 

(b) 

Fig. 8. Training results on the tested models. 8 inputs were used 
in 8.a while the most correlated features high beta and low 

gamma were removed in 8.b. 

Nevertheless, these results show that a model as simple as a 
perceptron can achieve an accuracy over 80% for the task of 
driver fatigue detection, even when using the raw data from the 
AMC 2.0 headset. This overall simplicity can be compared with 
other similar studies on the subject. 

Table 3. Accuracy results of the tested models with 8 and 6 
input features. 

Model 

# of 

trainable 

params 

Last 

training 

accuracy  

Last 

validation 

accuracy 

Test accuracy 

Models with 8 input features 

Perceptron 9 78.63% 77.68% 85.14% 
DNN-4 1625 86.11% 80.43% 85.14% 
DNN-5 513 81.06% 73.05% 81.62% 
DNN-6 785 86.69% 83.26% 86.00% 

Models with 6 input features 

Perceptron 7 76.36% 80.60% 81.37% 
DNN-4 1560 81.11% 81.46% 83.04% 
DNN-5 480 84.48% 84.46% 83.86% 

DNN-6 752 82.64% 81.20% 81.88% 
     

C. ALIVE Mind compared to previous studies 

Table 4 presents the main criteria of other similar studies in 
driver fatigue detection using EEG signals. These criteria have 
been selected to put in perspective the easier implementation of 
ALIVE Mind compared to others. If we want our solution to be 
effectively used in future cars to prevent drowsiness while 



driving, its implementation steps need to stay below a threshold 
that would discourage car constructors to try it on the field. 
 

Table 4. ALIVE Mind project and previous studies compared on 
specific criteria. The number of * indicates in a range of 1 to 5 
the degree of the criterion’s appliance, while ' X' signifies the 

presence of the criterion and '–' means not present. 

Criteria ALIVE Mind 
ANN 

[5] 

Hybrid 

systems [3] 

DNN  

[4] 

Best accuracy (%) 86 83 94 99 
Headset price (CAD) $50 N/A >$500 >$5000  

Data acquisition 
convenience 

***** *** * *** 

ML model complexity ** * ***** **** 
Restriction of driver 

movements 
* *** ***** **** 

Computer vision  - - X - 

       As Table 4 shows, many other models can achieve better 
performance than ours. But their algorithms generally demand 
more computational power, because of deeper DNNs, 
convolutional or recurrent neural networks. Data acquisition, 
including data collection and data preprocessing, will also be 
more complex than what is needed in ALIVE Mind. Some will 
even need other sources of data to improve their model’s accuracy 
as in [5]. 

  

  

Fig. 9. Size comparison between ALIVE Mind Controller 
(AMC) 2.0 headset versus OpenBCI Mark IV headset in [3]. 

On the hardware side, our homemade headset is by far easier 
to wear and connect than headsets of other studies while being 
also more affordable. This statement is clear when we look at a 
visual comparison between the AMC 2.0 headset and the headset 
used in one of the studies in Figure 9. Finally, it is important to 
note that, because of the Bluetooth technology used in ALIVE 
Mind scheme, a driver with this headset would not be restrained 
in its movements while driving, while other wired headsets would 
force the driver to limit the movements of his head. 

 
 

VI. CONCLUSION AND FUTURE WORK 

In conclusion, the ALIVE Mind project has improved many 
components of the AMC to make it easier to use. Our goal was to 
find an efficient and easy way to collect brain waves data using 
Bluetooth technology and propose an adequate way to reduce 
road accidents caused by fatigue. We have proven that using ML 
with AMC 2.0 is an effective way to accomplish this goal.  

For more improvements, we plan to collect more data with 
multiple subjects and to consider other types of ML models. 
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