
Enhanced ALIVE Mind Controller and Machine Learning to

Detect Drowsiness While Driving

Jihene Rezgui, Younes Kechout, Félix Jobin

Laboratoire Recherche Informatique Maisonneuve (LRIMa)
Montreal, Canada

jrezgui@cmaisonneuve.qc.ca
Abstract – Thousands of road accidents occur each year,

one of the main causes being drowsiness at the wheel.

Therefore, this paper proposes an enhanced scheme called

ALIVE Mind to detect drowsy drivers and take action on

their car using Machine Learning and EEG. For that matter,

we built and designed a circuit board called AMC 2.0 that

allows a simple EEG headset to read brain waves from a

driver and send this data to a computer via Bluetooth. Those

signals are then saved and analyzed by a deep neural network

to find if the driver is drowsy or is about to sleep. To evaluate

our solution, we conducted simulations and collected brain

signals of a subject driver while on a driving simulator. With

those values, we were able to train a model to detect whether

the subject was drowsy or awake. Finally, when the system

detects that the driver is in a fatigued state, it can take control

of the car to park it in a safe place. Preliminary results show

the effectiveness of the ALIVE Mind project and how it

outperforms previous works in terms of minimizing

computational needs and improving the prototype’s

convenience and suitability for car constructors.

Keywords: ALIVE Mind, controlling physical vehicle,
EEG, AMC, Machine Learning, IoT.

I. INTRODUCTION

The number of vehicles sold each year grows almost
exponentially. At the same time, the number of road accidents is
dramatically increasing. NHTSA estimates about 1,550 deaths,
71,000 injuries and $12.5 billions in economic losses are
attributed to driver fatigue each year, just in the United States of
America. However, we believe that there are many ways to reduce
the number of road accidents. In recent years several systems have
been developed and implemented to reduce the number of road
accidents, such as backup cameras or blind spot detection
systems, which can avoid certain collisions. There are other
systems such as traction control systems or the electronic stability
control that helps keeping control of the car in hazardous
conditions. The problem is that none of these systems considers
the most important cause of road accidents, namely the human
factor. By using the driver’s biometric data, it would be easier to
predict and avoid the various road accidents caused by anger,
fatigue, or the level of sobriety. Several studies focused on this
path by training Machine Learning (ML) models with data about
the driver, such as images or electroencephalographic (EEG)
signals, to detect if he or she is in a drowsy state [1-6]. However,
these works lack convenience and affordability to be considered
by car constructors. For this reason, we built an easy-to-use
system, called ALIVE Mind, that can detect drowsy drivers and
acts upon this real-time detection. To do so, we improved the

printed circuit board (PCB), designed in our previous work which
was called AMC 1.0 [7], to collect brain waves and trained a ML
model to determine whether the driver is drowsy or awake. As
soon as we know that the driver is about to sleep, we can take
action to help the driver, such as calling the police, turning on the
lights, ringing an alarm to wake up the driver or even taking
control of the car and bring the driver to a safe place. We think
that this project could be helpful in real life situations and could
contribute to reduce the amount of car accidents due to driver
fatigue.

Our contributions in this paper can be summarized as
follows: (1) We designed a custom PCB named ALIVE Mind
Controller 2.0 (AMC 2.0) which was integrated in a small and
easy-to-wear EEG headset; (2) We proposed a new way to
efficiently and effortlessly collect brain waves data using
Bluetooth technology; (3) We analysed the collected data to build
multiple ML models that can run with low computational
demand; (4) We ran several experiments to achieve high accuracy
with a restrained dataset and (5) We controlled a new physical
ALIVE car [8-9] based on the brain waves and the best ML
model’s outputs.

Section II gives a brief overview of related works and
compares them to our ALIVE Mind project. Section III describes
ALIVE Mind architecture and its different components. Section
IV explains the data preprocessing steps and ML models. Section
V shows the ML algorithms performances as well as an overall
comparison with previous studies under several criteria. Finally,
Section VI concludes the paper and provides potential paths for
future work.

II. RELATED WORK

Several projects have been proposed to tackle driver
drowsiness detection with ML techniques which are in wide use
today. These studies can be roughly divided into two categories:
a) Computer vision for driver fatigue detection and b) Deep
Learning and EEG. In this section, we present the main
characteristics of each category. Then, we highlight important
differences between studies in that category and ours.

A. Drowsiness Detection with Computer Vision vs

ALIVE Mind Project

The studies falling into this category chose the computer
vision approach to detect drowsiness on a driver. Their system
would generally involve a camera recording the face and eyes
movements. The captured images would then be fed into a ML
algorithm that would predict the state of the subject. Many studies
only use computer vision [1-2], but some decided to combine

image processing with EEG signals [3], leading to better accuracy
results in general.

Based on these studies, the body language of the face
transmits a lot of information about the drowsy state of a driver,
meaning that a model able to take these images as inputs can
achieve remarkable performances. It also helps to detect if the
driver is distracted while driving, which is another dangerous risk.
However, many factors can affect the recorded data in the driver’s
environment like brightness, quick movements, and the driver’s
distance from the camera, which can negatively impact the
model’s predictions. Because ALIVE Mind scheme is using EEG
signals to achieve the same results, we did not have to consider
such factors and thus could focus on reducing the computing cost
of our algorithms while keeping an acceptable accuracy.

B. Deep Learning and EEG for Driver Fatigue

Detection vs ALIVE Mind Project

Studies that fall into the second category are much closer to
ALIVE Mind project, because they predict the state of the driver
based on EEG signals recorded by a headset on the driver’s head.
This headset includes electrodes strategically placed on specific
zones of the brain to capture the signals, which are then sent to a
computer with wires to train a ML model. Some studies have
reported nearly perfect results in terms of accuracy [4] by using a
large and deep model, while others have shown great
performances with smaller models [5-6].
 The common aspect of most studies in this category is the
complexity and expensiveness of their hardware. For example, the
headset used in [4] is a complex system with more than 10
electrodes and can cost thousands of dollars, while also being
bulky for the driver. With ALIVE Mind, we aimed to use a simple,
homemade headset that cost us just about $50 and let the driver
almost forget that he is wearing it because of its light weight. Of
course, with only 2 electrodes, our headset is most likely less
precise in its data acquisition, but the accuracy results show that
the trained models can still reach acceptable performances.

III. ALIVE MIND SCHEME

Fig.1. Architecture of ALIVE Mind

In its current state, the system architecture is made of three
vital steps: (a) Data collection, (b) Communication and Data
Analysis and (c) Automatic Car Control. The headset uses a
TGAM module to transfer the data from the electrode to the AMC
2.0, the latter will organize and transmit the data by Bluetooth to
a computer or a mobile device.

A. Data Collection

The headset transmits a variety of data, including signal
strength and five different wave types, Delta, Theta, Alpha, Beta
and Gamma. They represent the electrical diagram occurring in
the brain of the headset user (see Fig.2). This headset is composed
of two electrodes, one on the forehead for the collection of brain
waves and another electrode on the earlobe as a reference. Even
if the headset is composed only of two electrodes, it remains very
advantageous. From its very low price (about 50$) as well as low
energy consumption. Indeed, we can leave the headset for more
than a week, to collect data.

Fig.2. EEG waves characteristics

The microcontroller used in version 1 (see Fig.3.a) of the
ALIVE Mind project has also been modified. The new version
(see Fig.3.b) is up to 5 times smaller than the previous one but
with more functionality. In addition to the basic components, we
have replaced the batteries with a rechargeable 3.7-volt lithium-
ion battery. A switch has been added to avoid draining the battery.
A new green LED is added to indicate if the circuit is well
powered.

Fig.3. Side by side comparison between AMCs versions

B. Communication and Data Analysis

Our headsets communicate via Bluetooth 2.0 with an HC-05
Bluetooth module. This module allows the headset to connect to
Windows or Android, but not with Apple products, because they
only accept modules using Bluetooth 4.0 or Bluetooth Low
Energy. Electrode data is transmitted via Bluetooth with a script
that we made in Python using a modified version of the PyBluez

library. However, we had to use Python 3.7 because it is the most
recent compatible version with this library. The task of this script
is to detect the different Bluetooth devices around, obtain the
MAC addresses of the different devices and establish a
connection with the selected headset. Once the connection is
established between the script and the headset, the data can be
sent to the ALIVE server to later perform a broadcast of the data
by Wi-Fi, print the data in the console or even save the data in an
automatically generated text file.

C. Automatic Car Control

We use a ALIVE car developed by LRIMa team to perform
our simulations [8-9] (see Fig.4.(f)). This car has an autonomous
driving algorithm that allows it to drive freely (see Fig4.(d)).
However, we can regain control of the car at any time. It is
possible to send commands to ask it to move forward, backward,
turn the wheels to the right or to the left or to toggle the headlights.
The data transmitted by the headset is treated and analysed by an
ML models (Fig. 4 (b) and Fig. 4 (c)) to determine when to take
control of the vehicle (Fig.4.(e)).

(a) collect brain waves (b) train the ML models

(c) Correlate data and compare

ML models
(d) drive the car

(e) Control the car if outputs indicate an asleep state

(f) The self-driving car.

Fig. 4. Steps of drowsiness detection with ML models [10]

IV. MACHINE LEARNING ALGORITHMS

This section describes the two supervised ML model types
analysed to achieve the drowsiness detection task, namely a
perceptron and a deep neural network (DNN). But first, we begin
with the preprocessing steps performed on the raw data.

A. The Preprocessing of Raw Data

Once the required data had been gathered by our AMC 2.0
headset as shown in section III, we began to analyse it to
determine the necessary preprocessing steps to execute in order to
get the best performances from our ML algorithms. Because the
input data is only made of very high integers, we applied a min-
max normalization on all input features to restrain all values
between 0 and 1.

We also decided to remove possible correlations between
input parameters. Previous research has shown that such
correlations can significantly decrease a model’s performance
[11-12]. By removing highly correlated input features, we reduce
the computing cost and improve the algorithm’s accuracy at the
same time. Therefore, we generated a correlation matrix that
computes the correlation coefficient � for each pair of input
features by using the following formula:

� = ∑ [(�� − �̅)(�� − ��)]����
�∑ (�� − �̅)����� × ∑ (�� − ��)�����

 (1)

where �̅ and �� are the means of the two features for which we
want to evaluate the correlation. The possible values of � range
between -1 and 1, the former meaning a perfect inverse
correlation and the latter meaning a perfect positive correlation.
A value near 0 would describe a very small correlation with
respect to the input features.

Fig. 5. The correlation matrix of the brain waves captured by the

headset’s electrodes. A higher number signifies a stronger
correlation between the 2 features.

As we can see in Figure 5, most of the coefficients are around
0.5, which is not significant enough to consider removing an input
feature. However, most of the � values paired with low gamma
and high beta are above 0.7. Because of these stronger
correlations, the model’s training could be affected by an over-
representation of data relationships in which high beta and low
gamma are a part of. Therefore, we decided to evaluate two sets
of input features: one with all the features and the other without
high beta and low gamma. In section V, we will compare the

results between the two sets to see if this change brought any help
to the model’s training.

B. The Perceptron Model for the Brain Waves

The first ML model we considered to achieve the required
task was a perceptron model. This type of model allows a large
number of input features while keeping the complexity and the
computing cost at a very low level. Our implementation of the
perceptron model consists of an input layer of n features and an
output layer of one Boolean value.

Fig. 6. Architecture of the perceptron model.

The output is generated by first computing the weighted sum
of each input:

� = � ����
�

���
� � (2)

where � is the number of inputs, �� the input value, �� the
associated weight and � the bias of the model. Both �� and � are
trainable parameters. We then apply the sigmoid activation
function on the result:

� = �(�) = 1
1 � �� (3)

which compresses the values between 0 and 1. After that we round
it to the nearest integer to obtain a binary output, where 1 stands
for a tired state and 0 means an awake state. Figure 6 shows the
perceptron’s architecture with the location of its trainable
parameters.

By considering this type of model, we aimed to find the
minimum of complexity needed to achieve acceptable
performances in driver fatigue detection. AI algorithms can be
difficult to run on small devices because of their high
computational demand while depending on less resources, thus
motivating the need of finding a middle ground between accuracy
and simplicity.

C. The Deep Neural Network Model for Brain Waves

The DNN was the second model type we considered in our
work. A lot like the perceptron, many input features can be fed at
the same time into this model. However, the addition of hidden
layers allows models of this type to solve more complex
situations, at the expense of more computational cost. A DNN
computes its outputs by following the same kind of algorithm as
the perceptron model but repeats it for each hidden layer in its
architecture.

Because of the large number of weighted sums that must be
done at the same time, it is common to use matrices in eq. 2, which
results in the following equation:

� = ! " � # (4)

where $ is the index of the layer and the operator between ! and
" is a matrix multiplication. We also apply a non-linear
activation function on the Matrix � at each hidden layer, which
is the Rectified Linear Unit (ReLU) function in our
implementation:

" %� = ��&'(�) = (0, �) (5)

where the function is applied to each element of the matrix � .
The resulting matrix " %� is then used as the input matrix of the
next layer. For the output layer, however, eq. 3, namely the
sigmoid function, is still used to reduce the output values between
0 and 1 as in the perceptron model.

Table 1. Search space and optimal value of some
hyperparameters in the deep neural network.

Hyperparameter Search Space Optimal Value

Learning rate 1 × 10*+, 1 × 10*, 1 × 10*,

Regularizer on each
layer

None, L1 with - =
.1 × 10*,, 1 × 10*/0,

L2 with - =
.1 × 10*+, 1 × 10*,0

L2 with - = 1 ×
10−3

Output activation
function

Sigmoid, softmax Sigmoid

We conducted several experimental training sessions in order
to find the best set of hyperparameters. This set is shown in Table
1 while the resulting network architecture is displayed in Figure
7. Because of overfitting on the training set, we added a
regularization technique on each layer of our optimal DNN. This
addition helped to reduce some weights with high values that
impact the model’s ability to generalize on new data. This strategy
has also been necessary in the perceptron model, as we will
discuss in section V.

Fig. 7. Architecture of the proposed DNN.

V. RESULTS ANALYSIS

As experimental results, we first trained 4 slightly different
models in order to find the best solution for driver fatigue
detection. The parameters used in this simulation are described in
subsection A, while the results are shown in subsection B. In
subsection C, we compare ALIVE Mind scheme to other similar
previous studies on many aspects.

A. Parameters of the Simulation
To train and compare our ML algorithms, we collected 11464

records of 8 brain waves from one subject using our ALIVE Mind
headset. This data has been used to train 4 models of two different
types in two input features arrangements. First, we evaluated the
models with all of the collected brain waves as inputs. Second, we
removed the two highest correlated input features, namely high
beta, and low gamma, and evaluated all models with the six
remaining input features.

Table 2. Differences in hyperparameters for the perceptron
model and DNNs. The number in the name of DNNs denotes the

number of hidden layers.

Model
Learning

rate

of neurons per

layer

Regularizer on each

layer

Perceptron 1 × 10*+ - L2 with - = 1 × 10*,
DNN-4 1 × 10*, 32, 24, 16, 8 L2 with - = 1 × 10*+
DNN-5 1 × 10*, 16, 12, 8, 4, 4 L2 with - = 1 × 10*+
DNN-6 1 × 10*, 16, 16, 12, 8, 4, 4 L2 with - = 1 × 10*+

For the tested models, their main differences in their

hyperparameters are shown in Table 2. The data has been
randomly split by a ratio of 70/10/20 for training, validation, and
testing sets. We also applied min-max normalization on each
input feature to reduce the high values in the dataset.

Some hyperparameters are common for all tested models.
Exactly like the model in Figure 8, all hidden layers of all DNNs
have a ReLU activation function. Since the problem we are
solving is a binary classification, we selected the binary cross-
entropy loss function. Finally, we fixed the batch size at 10 and

chose the Adam algorithm with 2� = 0.9, 2� = 0.999 and 5 =
1 × 10−7 as the optimizer, because its implementation of gradient
descent optimizes performance and computational cost [13].

B. Experimental Results

Based on the graphs shown in Figure 8, we can conclude that
the results are quite different depending on the number of input
features. With 8 inputs (Figure 8.a), the DNN with 6 layers is the
most suited model to accomplish the task of detecting drowsiness.
The higher number of layers have certainly helped it to generalize
from the training data, hence the 0.86% difference between DNN-4
and DNN-6 as shown in Table 3. With 6 inputs (Figure 8.b),
however, DNN-5 has the best performance while DNN-6 is second
in training.

Overall, it seems like removing the most correlated brain waves
have worsen the results, except for DNN-5. This may be caused by
the fact that the input features were not correlated enough to
negatively impact the training. Combined with the poor amount of
available data, most models potentially needed the information
contained in high beta and low gamma to improve their accuracy.

(a)

(b)

Fig. 8. Training results on the tested models. 8 inputs were used
in 8.a while the most correlated features high beta and low

gamma were removed in 8.b.

Nevertheless, these results show that a model as simple as a
perceptron can achieve an accuracy over 80% for the task of
driver fatigue detection, even when using the raw data from the
AMC 2.0 headset. This overall simplicity can be compared with
other similar studies on the subject.

Table 3. Accuracy results of the tested models with 8 and 6
input features.

Model

of

trainable

params

Last

training

accuracy

Last

validation

accuracy

Test accuracy

Models with 8 input features

Perceptron 9 78.63% 77.68% 85.14%
DNN-4 1625 86.11% 80.43% 85.14%
DNN-5 513 81.06% 73.05% 81.62%
DNN-6 785 86.69% 83.26% 86.00%

Models with 6 input features

Perceptron 7 76.36% 80.60% 81.37%
DNN-4 1560 81.11% 81.46% 83.04%
DNN-5 480 84.48% 84.46% 83.86%

DNN-6 752 82.64% 81.20% 81.88%

C. ALIVE Mind compared to previous studies

Table 4 presents the main criteria of other similar studies in
driver fatigue detection using EEG signals. These criteria have
been selected to put in perspective the easier implementation of
ALIVE Mind compared to others. If we want our solution to be
effectively used in future cars to prevent drowsiness while

driving, its implementation steps need to stay below a threshold
that would discourage car constructors to try it on the field.

Table 4. ALIVE Mind project and previous studies compared on
specific criteria. The number of * indicates in a range of 1 to 5
the degree of the criterion’s appliance, while ' X' signifies the

presence of the criterion and '–' means not present.

Criteria ALIVE Mind
ANN

[5]

Hybrid

systems [3]

DNN

[4]

Best accuracy (%) 86 83 94 99
Headset price (CAD) $50 N/A >$500 >$5000

Data acquisition
convenience

***** *** * ***

ML model complexity ** * ***** ****
Restriction of driver

movements
* *** ***** ****

Computer vision - - X -

 As Table 4 shows, many other models can achieve better
performance than ours. But their algorithms generally demand
more computational power, because of deeper DNNs,
convolutional or recurrent neural networks. Data acquisition,
including data collection and data preprocessing, will also be
more complex than what is needed in ALIVE Mind. Some will
even need other sources of data to improve their model’s accuracy
as in [5].

Fig. 9. Size comparison between ALIVE Mind Controller
(AMC) 2.0 headset versus OpenBCI Mark IV headset in [3].

On the hardware side, our homemade headset is by far easier
to wear and connect than headsets of other studies while being
also more affordable. This statement is clear when we look at a
visual comparison between the AMC 2.0 headset and the headset
used in one of the studies in Figure 9. Finally, it is important to
note that, because of the Bluetooth technology used in ALIVE
Mind scheme, a driver with this headset would not be restrained
in its movements while driving, while other wired headsets would
force the driver to limit the movements of his head.

VI. CONCLUSION AND FUTURE WORK

In conclusion, the ALIVE Mind project has improved many
components of the AMC to make it easier to use. Our goal was to
find an efficient and easy way to collect brain waves data using
Bluetooth technology and propose an adequate way to reduce
road accidents caused by fatigue. We have proven that using ML
with AMC 2.0 is an effective way to accomplish this goal.

For more improvements, we plan to collect more data with
multiple subjects and to consider other types of ML models.

ACKNOWLEDGMENT

We gratefully thank the FRQNT and Mitacs for financial
support. We also wish to thank other members of LRIMa
Laboratory for their help throughout the course of this work.

REFERENCES
[1] RoseBrock, Adrian. (2017, May). Drowsiness Detection Using

OpenCV. In pyimagesearch.
pyimagesearch.com/2017/05/08/drowsiness-detection-opencv/
[last visited on August 2022].

[2] Jayanthi, D., & Bommy, M. (2012). Vision-based real-time driver
fatigue detection system for efficient vehicle control. In Int J Eng

Adv Technol, 2(1), 238-242.
[3] Karuppusamy, N. S., & Kang, B. Y. (2020). Multimodal system to

detect driver fatigue using EEG, gyroscope, and image processing.
In IEEE Access, 8, 129645-129667.

[4] Sheykhivand, S., Rezaii, T. Y., Meshgini, S., Makoui, S., &
Farzamnia, A. (2022). Developing a Deep Neural Network for
Driver Fatigue Detection Using EEG Signals Based on
Compressed Sensing. In Sustainability, 14(5), 2941.

[5] King, L. M., Nguyen, H. T., & Lal, S. K. L. (2006, August). Early
driver fatigue detection from electroencephalography signals using
artificial neural networks. In 2006 International Conference of the

IEEE Engineering in Medicine and Biology Society (pp. 2187-
2190). IEEE.

[6] King, L. M., Nguyen, H. T., & Lal, S. K. L. (2006, August). Early
driver fatigue detection from electroencephalography signals using
artificial neural networks. In 2006 International Conference of the

IEEE Engineering in Medicine and Biology Society (pp. 2187-
2190). IEEE.

[7] Rezgui, J., Soldevila, E., & Kechout, Y. (2021). Novel Mind
Controller to Assess Student Concentration with Connected
Vehicles: ALIVE Mind. In 2021 International Symposium on

Networks, Computers and Communications (ISNCC) (pp. 1-6).
IEEE.

[8] Rezgui, J., Gagné, É., & Blain, G. (2020, October). Autonomous
Learning Intelligent Vehicles Engineering: ALIVE 1.0. In 2020

International Symposium on Networks, Computers and

Communications (ISNCC) (pp. 1-6). IEEE.
[9] Rezgui, J., Gagné, É., Blain, G., St-Pierre, O., & Harvey, M. (2020,

October). Platooning of autonomous vehicles with artificial
intelligence V2I communications and navigation algorithm. In
2020 Global Information Infrastructure and Networking

Symposium (GIIS) (pp. 1-6). IEEE.
[10] Simulation Video: [last visited 15 August 2022].

https://www.youtube.com/watch?v=4WA9VtUpug8
[11] Tang, J., Alelyani, S., & Liu, H. (2014). Feature selection for

classification: A review. In Data Classification: Algorithms and

Applications (pp. 37-64). CRC Press.
[12] Sautter, J., Faubel, F., & Schmidt, G. (2018). Feature selection for

DNN-based bandwidth extension. In Proc. Jahrestagung für

Akustik (DAGA), 43.
[13] Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic

optimization. In arXiv preprint arXiv:1412.6980.

