
 Novel IoT Development Kit for Personalized
Smart Ecosystems: Aliot

Jihene Rezgui, Enric Soldevila
Laboratoire Recherche Informatique Maisonneuve (LRIMa)

Montreal, Canada
jrezgui@cmaisonneuve.qc.ca

 Abstract – The Internet of Things (IoT) is a growing field
in computer science that needs more experts than ever
before. In fact, there are currently 12.2 billion active
connections of things, and it is predicted that this number
will go up to 27 billion by 2025 [1]. Creating a complete IoT
ecosystem is a time-consuming task and most of the time
represents unnecessary trouble for a newcomer in this field.
In this context, this paper proposes Aliot, an advanced
development kit designed to help researchers and learners
in their IoT projects. Aliot offers flexible tools available in
two of the most popular programming languages in IoT,
Python, and C++. It handles most of the required layers in
a connected ecosystem while offering a lot of freedom to the
end-user. It provides a reliable and secure connection for
multiple connected devices with many unique features such
as real-time monitoring and data management. Aliot was
tested and used in many research projects, such as a smart
city and a connected greenhouse. Preliminary results show
that Aliot outperforms the traditional approach of
developing an IoT ecosystem by reducing the amount of
code written by more than 80% and 10 times faster to
develop.
Keywords: Aliot, Internet of Things, Connected Ecosystem,
Smart City, ALIVEcode.

I. INTRODUCTION

 The number of things connected on the Internet increases by
18% [1] each year. Along with the almost exponential growth
of IoT connections, creating IoT solutions is a complex task that
only a small amount of people can do. Building a complete,
reliable, and secure IoT ecosystem is a time-consuming task,
and it is a major challenge to manage. Furthermore, IoT
solutions are becoming a must in the industry as well as in
scientific research. A comprehensive study [2] of representative
works on IoT network management highlighted and compared
existing IoT solutions. Many of these solutions [3-7] have
already offered a way for companies to develop and launch their
personalized IoT ecosystems but at a financial cost. Moreover,
some of these solutions were specialized in only one field. This
can be ideal for some specific projects, but too restrictive for
generalized projects. We would like to thank the previous
projects [3-7] for their contribution to the advancement of
research in IoT. Nevertheless, these previous tools lacked
flexibility and were not accessible to the average user. For this
reason, we proposed Aliot, which is an open-source [8-10]
multipurpose free set of tools. Aliot can do simple things, such
as monitoring the temperature in a room in real time, to more
sophisticated things, such as creating a fully connected smart
city to discover modern solutions to traffic. Thanks to its

simplicity, we believe Aliot could be used as a set of tools for
researchers in IoT and in AI. It can also facilitate data collection
in numerous and various applications, such as healthcare,
intelligent transport, etc. Aliot could especially be useful in AI
research projects that need a large data feed in real time. For
example, Aliot was used to visualize brain waves in real time
and remotely control a motorized vehicle based on the driver’s
drowsiness using Machine Learning algorithms. It is worth
noting that a preliminary version of Aliot was introduced during
an ACFAS congress [11].
 Our contributions in this paper can be summarized as
follows: (1) We created a custom communication protocol to
fully use Aliot’s services; (2) We added customizable
visualization components to display the ecosystem’s data in
real time; (3) We implemented a simple and easy-to-use private
NoSQL database available in each ecosystem with unique
features, such as real-time monitoring; (4) We designed Aliot
libraries in Python and C++ to facilitate the use of our
communication protocol; (5) We conducted a research on IoT,
and AI-powered smart cities with Aliot; (6) We compared an
IoT ecosystem’s creation with Aliot’s approach against the
traditional approach, in which each layer has to be developed;
(7) We introduced Aliot to college students in a specialized IoT
course and we let them create their own ecosystem to get their
feedback and improve Aliot consequently.
 Section II gives a brief overview of similar tools and compares
them to Aliot. Section III presents Aliot’s architecture and its
components. Section IV describes all the layers of Aliot.
Section V shows our results. Finally, section VI concludes the
paper.

II. SIMILAR TOOLS AND SOLUTIONS
 Various projects also shared a similar goal to ours by creating
an easy-to-use customizable IoT ecosystem. We will compare
two different platforms: a) SYNAISTHISI: An Enabling
Platform for the Current Internet of Things Ecosystem [3] and
b) SEnviron: An IoT Platform Based on Microservices and
Serverless Paradigms for Smart Farming Purposes [4].

A. Synaisthisi [3] vs aliot
 SYNAISTHISI is a platform that offers the creation and
management of IoT services from research to business areas.
The main difference with Aliot is its accessibility. The
SYNAISTHISI platform and its services are only accessible to
chosen parties with money, whereas Aliot is available to
everyone and completely free to use. We also widen our
spectrum of targeted people to the newcomers in IoT who have
never created IoT solutions before. This was possible by
offering them complete courses on how to get started in IoT and
create your own IoT solution.

B. Senviro [4] vs aliot

 SEnviro is also a web platform made to create and manage
complex IoT ecosystems. This platform is specialized in
monitoring the status of the current environment, such as air
quality, humidity, lighting, etc. What differentiates Aliot is its
flexibility. SEnviro is specialized in farming IoT devices,
whereas Aliot is purposely made to support any type of IoT
device. Aliot could be convenient to make any kind of
ecosystem. Its limits are only caused by the practical limitations
of the hardware used.

III. INTRODUCTION TO ALIOT’S
ARCHITECTURE

 Aliot works alongside an already existing project named
ALIVEcode [12]. ALIVEcode is an open source [8] web
platform used to teach the different fields of studies in computer
science. It specializes in the Internet of Things, Artificial
Intelligence, and coding. The specialized branch in IoT of
ALIVEcode is named ALIVEIoT, in which the visualization
tools and the management tools of Aliot are accessible to the
end-users. It implements a customizable Graphical User
Interface (GUI), a NoSQL private database, permissions
management of the connected devices, and automation scripts.
The following Fig.1 describes Aliot’s architecture and its key
components.

Fig.1. Aliot’s architecture and its key components

 Subsection A will present the IoT dashboard on ALIVEIoT.
Subsection B will explain the virtual devices on ALIVEIoT,
also referred as IoT objects. Finally, subsection C will define
IoT projects on ALIVEIoT, also called IoT ecosystems.

A. Iot dashboard

 On ALIVEIoT, the user has access to a personal IoT
dashboard as shown in Fig.2. In this dashboard, the user can
manage and access all his virtual devices and ecosystems.

Fig.2. ALIVEIoT: IoT Dashboard

B. Virtual devices

 A virtual device is the virtual representation of a user’s IoT
device on ALIVEIoT. Aliot handles secure and private
connections by using a key-based authentication system. Each
connected device needs to be registered on ALIVEIoT, in other
words, it needs its virtual representation to be created. When
registered, a unique identifier (uuid4) is generated. This unique
identifier is used and verified by Aliot’s services in each request
to ensure protection against malicious third parties. This also
enables permissions management for each IoT device. For
example, some IoT devices might be able to interact with a
specific IoT project (ecosystem) while others do not.
Additionally, logs of every request are kept and made available
in the IoT dashboard to the owner of the connected object.

C. Iot projects (iot ecosystems)

 On ALIVEIoT, you can create your own ecosystem in which
you decide the permissions of the connected devices and the
visibility of your ecosystem to the public. In a project, you have
access to the customizable GUI, the NoSQL database, the
virtual devices, and the automation scripts.

IV. LAYERS OF ALIOT’S IOT
ECOSYSTEM

 Aliot is the name given to the set of services and tools we
created to facilitate the accessibility of the Internet of Things
for researchers and learners.
 Our services include notably: (1) Bi-directional
communication with IoT devices; (2) Data sharing between
connected devices; (3) Real-time triggers and events on a
private NoSQL database; (4) Automation scripting using
AliveScript [13], a homemade language without any IDE or
software.
 Our tools include in particular: (1) Two libraries to use Aliot’s
services, one in C++ and one in Python, two broadly used
languages in the IoT industry; (2) Real-time visualization of an
ecosystem’s data and its sensors metrics in a fully customizable
GUI; (3) IoT ecosystem management on ALIVEIoT.

 All IoT layers of Aliot and their inner workings are shown in
Fig.3. The figure reads from bottom to top. The following
subsections will talk about all the layers in an IoT ecosystem
and how Aliot works and contributes to each one of them.

Fig.3. Layers of Aliot’s IoT ecosystem

A. Sensing and embedding components

 Aliot accepts every Wi-Fi-enabled device. The sensors and
actuators can be anything and have no impact on Aliot’s
performances. Some of the components using Aliot are
presented in Fig.4 below.

Fig.4. Some Aliot-powered IoT devices

 For demonstration and research purposes, we already built
many devices [14], such as a connected greenhouse, a
connected light, connected cars, a connected bridge, a
connected streetlight, and a connected headset that reads brain
signals.

1 This code is written in English, but it is possible to write the code in
French with a French version of AliveScript.

B. Connectivity
 Aliot is based on TCP packets traveling over the secured
HTTPS protocol. To enable bi-directional communication, we
make use of the WebSocket communication protocol [15] that
creates a full-duplex communication, which is a TCP long-
lasting bi-directional connection between our server and the
connected device. Throughout the connection, it is ensured that
the connected device is registered and allowed to perform
certain actions with the unique identifier of its corresponding
virtual device. This is done in the IoT gateway that ensures
secure communication. We built this expendable and modular
gateway with its own REpresentational State Transfer
Application Programming Interface (REST API) to redirect
data flow or utilize certain available services in the Cloud.
Additionally, we developed two different libraries which utilize
our API in both C++ and Python [9-10]. They provide an easy
way to use Aliot’s API and access cloud services for end-users.
It is worth mentioning that there is an alternative to WebSocket
named MQTT [16] which is a standard messaging protocol in
IoT. At the time we did not opt for this protocol, but we plan on
implementing it for a future work. Nevertheless, we integrated
the publish-subscribe mechanism in our own way with the
WebSocket protocol.

C. Cloud and data processing
 For the cloud and processing layer, we created flexible, fast
and unique services that take complicated uses and concepts of
IoT and make them easier and more accessible to researchers.
For example, in one of our demonstrations, the Connected
Greenhouse [14], we could visualize data coming from the
sensors in real-time on ALIVEIoT by writing one simple
function call in Python, as shown in Alg.1 below.

Alg. 1. The greenhouse updates the NoSQL database with
the sensors’ data 1

greenhouse.update_doc({
 '/document/humidity': greenhouse_state.humidity,
 '/document/temperature': greenhouse_state.temperature
})

 The Python call is then translated to communicate more
efficiently with our API. Afterwards, the IoT gateway validates
permissions and decides what service to call in the cloud
processing layer. The service can then perform the requested
action. In this case, it updates the fields for the temperature and
humidity in the private NoSQL database and automatically
reflects the changes in the end-user GUI as shown in Fig.5.

Fig.5. Connected Greenhouse customized GUI on ALIVEIoT

D. Iot analytics and data management

 One of the most crucial parts of an IoT ecosystem is collecting
and monitoring incoming data. When using the suitable tools,
it is possible to prevent issues or detect irregularities during
data collection. Aliot is equipped with tools that allow
monitoring of the incoming data and creating triggers for them.
These monitoring services can be used by both Aliot libraries
or directly on ALIVEIoT without any IDE or software using
AliveScript, a homemade language with IoT functionalities.
For example, in the Connected Greenhouse [14], we automated
the ecosystem by monitoring the temperature and humidity in
the room to optimize the growth of crops. An alarm was
programmed to be set off if the humidity or temperature was
too high. This was achieved simply by using only a few lines of
code in AliveScript as shown in Alg.2.

Alg. 2. Monitoring the Greenhouse humidity
1. use Aliot
2. notif "The script just started"
3. function humidityChanges(key, val)

3.1 notif "Humidity changed: " + val + "%"
3.2 if val < 10

Play frequency of 500Hz
Aliot.updateComponent("buzzer", 500)

3.3 end if
4. end function
5. Aliot.listenDoc("/document/humidity",

humiditeChanges) # Start monitoring

E. End-user devices and user interface

 As previously stated in Section III, it is on ALIVEIoT that an
interface can be used to monitor sensors data in real-time and
interact with the IoT devices. Aliot offers some special views
for the end-user inside an ecosystem such as the customizable
GUI, the document where users can view and edit the entries
inside the NoSQL database, the permission for the IoT devices,

and finally a page to manage all automation scripts written in
AliveScript. The document view is shown below in Fig.6.

Fig.6. ALIVEIoT: Interface of an IoT ecosystem

V. RESULTS ANALYSIS

 The following case studies were conducted by using Python
3.7 or higher for the Raspberry Pi IoT devices and C/C++ for
the ESP32 IoT devices, along with some AliveScript available
directly on ALIVEIoT.

A. First case study – smart city

 In the past, we conducted another project called the Smart City
[14] using ALIVEIoT and Aliot. This project is the evidence of
what Aliot is capable of. The goal of the Smart City was to
replicate in a miniaturized and controlled city environment in
order to find and test modern and innovative solutions to traffic.
This city is composed of 5 IoT devices powered by Aliot: two
cars, one using a Raspberry Pi 4 and the other one using an
ESP32 microcontroller, connected streetlights (Raspberry Pi
Zero), a connected bridge (esp32), and a connected parking
(Raspberry Pi 4). We wrote a script in AliveScript that
automated the itinerary of the car from point A to point B using
many of Aliot’s services. The following itinerary is shown in
Fig.7. Additionally, a part of the script used is presented below
the figure, alongside some in-depth explanations of every step
of the itinerary. A video of the Smart City in action is also
available for viewing [17].

a) The car starts near an open bridge b) The car goes forward when the bridge

closes
c) The car arrives at the intersection

d) The car turns left when the light

becomes green
e) The car arrives at the parking and its

license plate is detected
f) The car parks when the gate of the

parking opens
Fig.7. Itinerary of the motorized vehicle in the Smart City

1. The car starts its course in front of an open bridge (Fig.7a).

2. The car is detected by the connected bridge and the bridge
closes itself. The bridge then updates the database with its new
closed state. The car which was listening for this state to change
(Alg.3a) proceeds forward to the intersection (Alg.3b and
Fig.7b).

3. The streetlight is red, so the car makes a stop (Fig.7c).

4. The streetlight detects the car using an ultrasonic distance
sensor and the light automatically changes to green. The
streetlight updates the database with its new state. The car
which was listening for this state then makes a left if it’s green
(Fig.7d).

5. Once arrived in front of the connected parking, the license
plate of the car is scanned and recognized using an AI algorithm
(Fig.7e). If the license plate is owned by a person with valid
access from the database, the barrier opens, and the name of the
person is shown on the Liquid Crystal Display (LCD) screen.
Once the barrier is fully opened, the parking updates the
database with its new state. The car, which was listening for this
state, parks itself (Fig.7f).

Alg. 3. The car is at the bridge 2

a) The car listens for the change of the open state of the
bridge

1. function bridgeOpensOrCloses(path, open)
1.1 if open

notif "The bridge just opened"
1.2 else

notif "The bridge just closed"
Aliot.removeListener(bridgeOpensOrClo
ses)
bridgeCloses()

1.3 end if
2. end function
3. Aliot.listenDoc("/document/bridge/open",

bridgeOpensOrCloses)

b) The bridge just closed

1. function bridgeCloses()
1.1 Aliot.sendAction("forward", { "time": tile

* 3 })
1.2 Aliot.sendAction("left", { "deg": 90})
1.3 Aliot.sendAction("forward", { "time": tile

* 1.5 })
1.4 Aliot.listenDoc("/document/lights/N/state

", lightChanges)
2. end function

2 This code is written in English, but it is possible to write the code in
French with a French version of AliveScript.

B. Second case study – approach
comparison

 To further demonstrate the potential of Aliot, we developed a
small ecosystem using two different approaches. The
ecosystem had two ESP32 microcontrollers with one LED on
each device and one photoresistor on one of them. The goal of
the ecosystem was to have a real-time representation of the light
level and a small button on a web page that could turn on both
LEDs. We compared the traditional approach where you must
build each layer of an IoT ecosystem, to our approach with
Aliot. The traditional approach included a web server coded in
Python hosted with Django on a dedicated server with manually
set port forwarding from WAN, with an Asynchronous Server
Gateway Interface (ASGI) using WebSockets to establish the
connection from the C++ code of the ESP32 to the web server
and ensure the communication between the two instances, and
finally, a JavaScript code to update the website in real-time with
another WebSocket connection. Preliminary results show the
effectiveness of Aliot with a reduction in lines of code written
of more than 80% and a reduction of time spent developing
of more than 10 times Results are shown below in Table 1.

Criteria Aliot’s approach Traditional approach

Time spent 0:22:04 3:50:12

Of lines of code
written

42 217

Of
programming

languages needed
1 3

Complexity * ****

Secured
connection

X -

Table 1. Traditional approach versus Aliot’s approach. The
number of * indicates in a range of 1 to 5 the degree of the
criterion’s appliance, while ' X' signifies the presence of the

criterion and '–' means not present.

C. Third case study – college course

 In Autumn 2021, Aliot was used as a teaching tool at
Maisonneuve’s College, Montréal, Canada, in a new IoT course
composed of 28 students. Most of the students were completely
new to IoT. They used Aliot to monitor the incoming data from
many different IoT devices. As a final project, they were asked
to program and build a connected parking similar to the one
showcased in the Smart City project. They were also asked to
build a connected musical keyboard that played musical notes
in real time on ALIVEIoT.
 After the course, the students were asked to fill out of form
about their experience of using Aliot. 24 out of the 28 students

filled out the form and rated how easy-to-use Aliot was and
their overall appreciation. At that time, the students used an
earlier version of Aliot with fewer debugging tools, some
remaining bugs and did not include most of the services
available now, such as the automation, the database, and the
real-time triggers and events. Nevertheless, the feedback
received, illustrated in Fig.8 below, was mostly positive.

a) Overall experience of using Aliot

b) How easy it was to integrate Aliot into existing projects.

Fig. 8. Feedback received after using Aliot in the college IoT

course

 The feedback received confirm the effectiveness and
especially the potential that our experimental set of tool has. As
the table shows, the level of difficulty experienced by the
students was relatively low. It is important to note that this was
Aliot in its early stage of development, with the lack of major
features, error handling, and reliability which have all been
addressed in the newer versions of Aliot. Also, no students were
dissatisfied with Aliot. We will soon be able to further confirm
the effectiveness and flexibility of Aliot in an upcoming second
iteration of the IoT course this Autumn 2022 with two classes
resulting in a total of 56 students.

VI. CONCLUSION

 To conclude, Aliot offers a variety of unique tools to help
researchers develop in a faster and easier way their own IoT
ecosystem based on their needs. For further improvements, we
would like to widen our range of available services in the IoT

analytics and data management layer to enhance the data
collection and processing required in AI research. Moreover,
we would like to integrate the MQTT protocol as an alternative
to the WebSocket protocol we are using.

ACKNOWLEDGMENT

 We would like to thank Mitacs and Énergie Scolaire for
financially supporting this research. We would also like to
thank all the other LRIMa’s members who helped on
ALIVEcode and the Smart City project.

REFERENCES

[1] IoT Analytics, State of IoT 2022: Number of connected IoT
devices: https://iot-analytics.com/number-connected-iot-devices
[last visited 29 august 2022].

[2] M. Aboubakar et al. A review of iot network management:
Current status and perspectives Journal of King Saud University-
Computer and Information Sciences (2021).

[3] Georgios Pierris, Dimosthenis Kothris, Evaggelos Spyrou, and
Costas Spyropoulos. 2015. SYNAISTHISI: an enabling platform
for the current internet of things ecosystem. In Proceedings of the
19th Panhellenic Conference on Informatics (PCI '15).
Association for Computing Machinery, NY, USA, 438–444.

[4] Trilles, S. et al. (2020). An IoT Platform Based on Microservices
and Serverless Paradigms for Smart Farming Purposes. Sensors
(Basel, Switzerland), 20(8), 2418.

[5] Isakovic, H. et al. (2019). CPS/IoT Ecosystem: A Platform for
Research and Education. In: Chamberlain, R., Taha, W.,
Törngren, M. (eds) Cyber Physical Systems. Model-Based
Design. CyPhy WESE 2018 2018. Lecture Notes in Computer
Science(), vol 11615. Springer, Cham.

[6] Jamin, A. et al. (2016). An Aggregation Plateform for IoT-Based
Healthcare: Illustration for Bioimpedancemetry, Temperature
and Fatigue Level Monitoring. Lecture Notes of the Institute for
Computer Sciences, Social Informatics and Telecommunications
Engineering, vol 187. Springer, Cham.

[7] thethings.io, 2018. The IoT platform to monitorize your devices.
URL: https://thethings.io/ [last visited 29 August 2022].

[8] ALIVEcode open-source repository:
https://github.com/ALIVEcode/ALIVEcode [last visited 26
August 2022].

[9] Aliot-c public repository: https://github.com/ALIVEcode/aliot-c
[last visited 28 August 2022].

[10] Aliot-py public repository: https://github.com/ALIVEcode/aliot-
py [last visited 28 August 2022].

[11] E. Soldevila et M. Laroche, M. L’abbee et J. Rezgui, “Aliot : un
environnement numérique pour un apprentissage accessible et
interactif de la programmation des objets connectés“,
Communications étudiantes, Congrès ACFAS 2022, CANADA.

[12] ALIVEcode: https://alivecode.ca [last visited 28 August 2022].
[13] J. Rezgui, F. Jobin, S. Beaulieu and Z. Ardekani, ‘Autonomous

Learning Intelligent Vehicles Engineering in a Programming
Learning Application for Youth: ALIVE PLAY, accepted IEEE
ISNCC 2021, Dubei.

[14] Aliot showcased projects: https://alivecode.ca/showcase/projects
[last visited 29 August 2022].

[15] RFC6455, The Websocket Protocol: https://www.rfc-
editor.org/rfc/rfc6455 [last visited 26 August 2022].

[16] Message Queuing Telemetry Transport (MQTT). http://mqtt.org/
[last visited 29 August 2022].

[17] The Smart City feature video:
https://www.youtube.com/watch?v=a-wLMgqOz9E. [last
visited 26 August 2022].

